Damping assignment of boundary controlled port-Hamiltonian systems with unknown open-loop damping
Authors
Jesus-Pablo Toledo-Zucco, Alex Dos Reis De Souza, Pierre Vuillemin, Charles Poussot-Vassal
Abstract
A damping assignment control law for infinite-dimensional port-Hamiltonian systems in one-dimensional space with actuators and sensors located at the spatial boundaries is proposed with the novelty that the boundary damping is unknown. This allows us to fix a desired decay of energy for the cases in which the system is over-damped, poorly damped, and even with negative damping. We propose an observer composed of an infinite-dimensional model and a finite-dimensional one for the state and parameter estimation. The asymptotic convergence of the observer is shown using LaSalle’s invariance principle assuming that the trajectories are pre-compact. Finally, an observer-based adaptive output feedback controller is proposed for the damping assignment in the closed loop. The passivity of the closed-loop system is guaranteed with respect to the initial Hamiltonian of the system under the assumption that the observer is initialized identically to the current state and close enough to the parameter value. The transmission line is used to exemplify this approach.
Keywords
Boundary control systems; distributed parameter systems; port-Hamiltonian systems; damping assignment; observer design; adaptive control
Citation
- Journal: IFAC-PapersOnLine
- Year: 2023
- Volume: 56
- Issue: 2
- Pages: 6807–6812
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2023.10.393
- Note: 22nd IFAC World Congress- Yokohama, Japan, July 9-14, 2023
BibTeX
@article{Toledo_Zucco_2023,
title={{Damping assignment of boundary controlled port-Hamiltonian systems with unknown open-loop damping}},
volume={56},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2023.10.393},
number={2},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Toledo-Zucco, Jesus-Pablo and De Souza, Alex Dos Reis and Vuillemin, Pierre and Poussot-Vassal, Charles},
year={2023},
pages={6807--6812}
}
References
- Biedermann, B. & Meurer, T. Observer design for a class of nonlinear systems combining dissipativity with interconnection and damping assignment. International Journal of Robust and Nonlinear Control vol. 31 4064–4080 (2021) – 10.1002/rnc.5461
- Curtain, (2012)
- Demetriou, Optimal online parameter estimation for a class of infinite dimensional systems using kalman filters. (2003)
- Dochain, D. State and parameter estimation in chemical and biochemical processes: a tutorial. Journal of Process Control vol. 13 801–818 (2003) – 10.1016/s0959-1524(03)00026-x
- Jacob, B. & Kaiser, J. T. On Exact Controllability of Infinite-Dimensional Linear Port-Hamiltonian Systems. IEEE Control Systems Letters vol. 3 661–666 (2019) – 10.1109/lcsys.2019.2916814
- Jacob, (2012)
- Kotyczka, Finite-dimensional observers for port-hamiltonian systems of conservation laws. (2019)
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Macchelli, A. Boundary energy shaping of linear distributed port-Hamiltonian systems. European Journal of Control vol. 19 521–528 (2013) – 10.1016/j.ejcon.2013.10.002
- Macchelli, A., Le Gorrec, Y., Ramirez, H. & Zwart, H. On the Synthesis of Boundary Control Laws for Distributed Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 62 1700–1713 (2017) – 10.1109/tac.2016.2595263
- Malzer, T., Ecker, L. & Schöberl, M. Energy-based Control and Observer Design for higher-order infinite-dimensional Port-Hamiltonian Systems. IFAC-PapersOnLine vol. 54 44–51 (2021) – 10.1016/j.ifacol.2021.11.053
- Malzer, T., Toledo, J., Gorrec, Y. L. & Schöberl, M. Energy-Based In-Domain Control and Observer Design for Infinite-Dimensional Port-Hamiltonian Systems. IFAC-PapersOnLine vol. 54 468–475 (2021) – 10.1016/j.ifacol.2021.06.104
- Marquez, F. M., Zufiria, P. J. & Yebra, L. J. Port-Hamiltonian Modeling of Multiphysics Systems and Object-Oriented Implementation With the Modelica Language. IEEE Access vol. 8 105980–105996 (2020) – 10.1109/access.2020.3000129
- Maschke, Port-controlled hamiltonian systems: modelling origins and systemtheoretic properties. (1992)
- Mattioni, (2021)
- Pfeifer, M., Caspart, S., Strehle, F. & Hohmann, S. Full-Order Observer Design for a Class of Nonlinear Port-Hamiltonian Systems. IFAC-PapersOnLine vol. 54 149–154 (2021) – 10.1016/j.ifacol.2021.11.070
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Transactions on Automatic Control vol. 59 2849–2855 (2014) – 10.1109/tac.2014.2315754
- Redaud, Distributed damping assignment for a wave equation in the port-hamiltonian framework. (2022)
- Toledo, Passive observers for distributed port-hamiltonian systems. (2020)
- Trenchant, V., Ramirez, H., Le Gorrec, Y. & Kotyczka, P. Finite differences on staggered grids preserving the port-Hamiltonian structure with application to an acoustic duct. Journal of Computational Physics vol. 373 673–697 (2018) – 10.1016/j.jcp.2018.06.051
- Trostorff, Characterisation for exponential stability of port-hamiltonian systems. arXiv preprint (2022)
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Venkatraman, A. & van der Schaft, A. J. Full-order observer design for a class of port-Hamiltonian systems. Automatica vol. 46 555–561 (2010) – 10.1016/j.automatica.2010.01.019
- Villegas, (2007)
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Transactions on Automatic Control vol. 54 142–147 (2009) – 10.1109/tac.2008.2007176
- Vincent, B., Hudon, N., Lefèvre, L. & Dochain, D. Port-Hamiltonian observer design for plasma profile estimation in tokamaks. IFAC-PapersOnLine vol. 49 93–98 (2016) – 10.1016/j.ifacol.2016.10.761
- Yaghmaei, A. & Yazdanpanah, M. J. Structure Preserving Observer Design for Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 64 1214–1220 (2019) – 10.1109/tac.2018.2847904