Observer design for a class of nonlinear systems combining dissipativity with interconnection and damping assignment
Authors
Bastian Biedermann, Thomas Meurer
Abstract
A nonlinear observer design approach is proposed that exploits and combines port‐Hamiltonian systems and dissipativity theory. First, a passivity‐based observer design using interconnection and damping assignment for time variant state affine systems is presented by applying output injection to the system such that the observer error dynamics takes a port‐Hamiltonian structure. The stability of the observer error system is assured by exploiting its passivity properties. Second, this setup is extended to develop an observer design approach for a class of systems with a time varying state affine forward and a nonlinear feedback contribution. For a class of nonlinear systems, the theory of dissipative observers is adapted and combined with the results for the passivity‐based observer design using interconnection and damping assignment. The convergence of the compound observer design is determined by a linear matrix inequality. The performance of both observer approaches is analyzed in simulation examples.
Citation
- Journal: International Journal of Robust and Nonlinear Control
- Year: 2021
- Volume: 31
- Issue: 9
- Pages: 4064–4080
- Publisher: Wiley
- DOI: 10.1002/rnc.5461
BibTeX
@article{Biedermann_2021,
title={{Observer design for a class of nonlinear systems combining dissipativity with interconnection and damping assignment}},
volume={31},
ISSN={1099-1239},
DOI={10.1002/rnc.5461},
number={9},
journal={International Journal of Robust and Nonlinear Control},
publisher={Wiley},
author={Biedermann, Bastian and Meurer, Thomas},
year={2021},
pages={4064--4080}
}
References
- BESTLE, D. & ZEITZ, M. Canonical form observer design for non-linear time-variable systems. International Journal of Control vol. 38 419–431 (1983) – 10.1080/00207178308933084
- Krener, A. J. & Isidori, A. Linearization by output injection and nonlinear observers. Systems & Control Letters vol. 3 47–52 (1983) – 10.1016/0167-6911(83)90037-3
- Moreno, J. A. Approximate Observer Error Linearization by Dissipativity Methods. Lecture Notes in Control and Information Science 35–51 doi:10.1007/11529798_3 – 10.1007/11529798_3
- Hammouri, H. & Gauthier, J. P. Bilinearization up to output injection. Systems & Control Letters vol. 11 139–149 (1988) – 10.1016/0167-6911(88)90088-6
- Besançon, G. State-Affine Systems and Observer-Based Control. IFAC Proceedings Volumes vol. 31 391–396 (1998) – 10.1016/s1474-6670(17)40367-3
- Besancon, G. On output transformations for state linearization up to output injection. IEEE Transactions on Automatic Control vol. 44 1975–1981 (1999) – 10.1109/9.793789
- Besancon, G. & Bornard, G. State Equivalence Based Observer Synthesis for Nonlinear Control Systems. IFAC Proceedings Volumes vol. 29 2167–2172 (1996) – 10.1016/s1474-6670(17)57993-8
- New Directions in Nonlinear Observer Design. Lecture Notes in Control and Information Sciences (Springer London, 1999). doi:10.1007/bfb0109917 – 10.1007/bfb0109917
- Willems, J. C. Dissipative dynamical systems part I: General theory. Archive for Rational Mechanics and Analysis vol. 45 321–351 (1972) – 10.1007/bf00276493
- Willems, J. C. Dissipative dynamical systems part I: General theory. Archive for Rational Mechanics and Analysis vol. 45 321–351 (1972) – 10.1007/bf00276493
- Willems, J. C. Dissipative Dynamical Systems. European Journal of Control vol. 13 134–151 (2007) – 10.3166/ejc.13.134-151
- Hill, D. & Moylan, P. The stability of nonlinear dissipative systems. IEEE Transactions on Automatic Control vol. 21 708–711 (1976) – 10.1109/tac.1976.1101352
- Hill, D. J. & Moylan, P. J. Stability results for nonlinear feedback systems. Automatica vol. 13 377–382 (1977) – 10.1016/0005-1098(77)90020-6
- Hill, D. J. & Moylan, P. J. Dissipative Dynamical Systems: Basic Input-Output and State Properties. Journal of the Franklin Institute vol. 309 327–357 (1980) – 10.1016/0016-0032(80)90026-5
- Moreno, J. A. Observer Design for Nonlinear Systems: A Dissipative Approach. IFAC Proceedings Volumes vol. 37 681–686 (2004) – 10.1016/s1474-6670(17)30549-9
- SchaumA MorenoJA. Dissipativity based observer design for a class of biochemical process models. CONCIBE‐CACIB;2006.
- Moreno, J. A. Observer design for bioprocesses using a dissipative approach. IFAC Proceedings Volumes vol. 41 15559–15564 (2008) – 10.3182/20080706-5-kr-1001.02631
- Khalil H. Nonlinear Systems (2002)
- Arcak, M. & Kokotović, P. Nonlinear observers: a circle criterion design and robustness analysis. Automatica vol. 37 1923–1930 (2001) – 10.1016/s0005-1098(01)00160-1
- Deza, F., Busvelle, E., Gauthier, J. P. & Rakotopara, D. High gain estimation for nonlinear systems. Systems & Control Letters vol. 18 295–299 (1992) – 10.1016/0167-6911(92)90059-2
- Alessandri, A. Design of observers for lipschitz nonlinear systems using LMI. IFAC Proceedings Volumes vol. 37 459–464 (2004) – 10.1016/s1474-6670(17)31266-1
- Schaft A. Port‐Hamiltonian Systems: An Introductory Survey (2006)
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control vol. 10 432–450 (2004) – 10.3166/ejc.10.432-450
- Venkatraman, A. & van der Schaft, A. J. Full-order observer design for a class of port-Hamiltonian systems. Automatica vol. 46 555–561 (2010) – 10.1016/j.automatica.2010.01.019
- Vincent, B., Hudon, N., Lefèvre, L. & Dochain, D. Port-Hamiltonian observer design for plasma profile estimation in tokamaks. IFAC-PapersOnLine vol. 49 93–98 (2016) – 10.1016/j.ifacol.2016.10.761
- Pfeifer, M., Krebs, S., Hofmann, F., Kupper, M. & Hohmann, S. Interval Input-State-Output Estimation for Linear Port-Hamiltonian Systems with Application to Power Distribution Systems. 2019 IEEE 58th Conference on Decision and Control (CDC) 3176–3183 (2019) doi:10.1109/cdc40024.2019.9029590 – 10.1109/cdc40024.2019.9029590
- Yaghmaei, A. & Yazdanpanah, M. J. Structure Preserving Observer Design for Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 64 1214–1220 (2019) – 10.1109/tac.2018.2847904
- Biedermann, B., Rosenzweig, P. & Meurer, T. Passivity-Based Observer Design for State Affine Systems Using Interconnection and Damping Assignment. 2018 IEEE Conference on Decision and Control (CDC) 4662–4667 (2018) doi:10.1109/cdc.2018.8619143 – 10.1109/cdc.2018.8619143
- Freund, E. Zeitvariable Mehrgrößensysteme. (Springer Berlin Heidelberg, 1971). doi:10.1007/978-3-642-48185-7 – 10.1007/978-3-642-48185-7
- Zhang F. The Schur Complement and Its Applications (2006)
- Astolfi A. Nonlinear and Adaptive Control with Applications (2007)
- Lorenz, E. N. Deterministic Nonperiodic Flow. Journal of the Atmospheric Sciences vol. 20 130–141 (1963) – 10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2
- Hirsch MW. Differential Equations, Dynamical Systems, and an Introduction to Chaos (2012)
- Moreno, J. A. Proportional-Integral Observer design for nonlinear systems. 2008 47th IEEE Conference on Decision and Control 2308–2313 (2008) doi:10.1109/cdc.2008.4739282 – 10.1109/cdc.2008.4739282
- Zhang, Q. AN ADAPTIVE OBSERVER FOR SENSOR FAULT ESTIMATION IN LINEAR TIME VARYING SYSTEMS. IFAC Proceedings Volumes vol. 38 137–142 (2005) – 10.3182/20050703-6-cz-1902.01825
- Slotine JJE. Applied Nonlinear Control (1991)