Brayton-moser formulation of infinite dimensional port-hamiltonian systems with application to boundary control
Authors
Abstract
In this paper, for a class of distributed port-Hamiltonian systems defined on a one-dimensional spatial domain, an equivalent Brayton-Moser formulation is provided. The dynamic is expressed as a gradient equation with respect to a new storage function, the “mixed-potential,” with the dimensions of power. The system is then passive with respect to a supply rate that is related to the reactive power, and that depends on the boundary port variables and on their time derivatives. This equivalent representation is the starting point for the development of boundary control laws able to shape the mixed-potential function. Differently from energy-balancing control schemes, this technique allows to deal with pervasive dissipation in the system in an effective way. The general theory is illustrated with the help of an example, the boundary stabilisation of a transmission line with internal dissipation.
Citation
- Journal: 2016 IEEE 55th Conference on Decision and Control (CDC)
- Year: 2016
- Volume:
- Issue:
- Pages: 543–548
- Publisher: IEEE
- DOI: 10.1109/cdc.2016.7798325
BibTeX
@inproceedings{Macchelli_2016,
title={{Brayton-moser formulation of infinite dimensional port-hamiltonian systems with application to boundary control}},
DOI={10.1109/cdc.2016.7798325},
booktitle={{2016 IEEE 55th Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Macchelli, Alessandro},
year={2016},
pages={543--548}
}
References
- Gorrec, Y. L., Macchelli, A., Ramirez, H. & Zwart, H. Energy shaping of boundary controlled linear port Hamiltonian systems. IFAC Proceedings Volumes 47, 1580–1585 (2014) – 10.3182/20140824-6-za-1003.01966
- Macchelli, A. Dirac structures on Hilbert spaces and boundary control of distributed port-Hamiltonian systems. Systems & Control Letters 68, 43–50 (2014) – 10.1016/j.sysconle.2014.03.005
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM J. Control Optim. 43, 743–767 (2004) – 10.1137/s0363012903429530
- Macchelli, A. & Melchiorri, C. Control by interconnection of mixed port Hamiltonian systems. IEEE Trans. Automat. Contr. 50, 1839–1844 (2005) – 10.1109/tac.2005.858656
- Macchelli, A., Gorrec, Y. L. & Ramirez, H. Asymptotic Stabilisation of Distributed Port-Hamiltonian Systems by Boundary Energy-Shaping Control. IFAC-PapersOnLine 48, 488–493 (2015) – 10.1016/j.ifacol.2015.05.143
- Macchelli, A. Boundary Energy-Shaping Control of the Shallow Water Equation. IFAC Proceedings Volumes 47, 1586–1591 (2014) – 10.3182/20140824-6-za-1003.00870
- Macchelli, A. Boundary energy shaping of linear distributed port-Hamiltonian systems. European Journal of Control 19, 521–528 (2013) – 10.1016/j.ejcon.2013.10.002
- Putting energy back in control. IEEE Control Syst. 21, 18–33 (2001) – 10.1109/37.915398
- Jeltsema, D., Ortega, R. & Scherpen, J. M. A. On passivity and power-balance inequalities of nonlinear rlc circuits. IEEE Trans. Circuits Syst. I 50, 1174–1179 (2003) – 10.1109/tcsi.2003.816332
- Ortega, R., Jeltsema, D. & Scherpen, J. M. A. Power shaping: A new paradigm for stabilization of nonlinear RLC circuits. IEEE Trans. Automat. Contr. 48, 1762–1767 (2003) – 10.1109/tac.2003.817918
- García-Canseco, E., Jeltsema, D., Ortega, R. & Scherpen, J. M. A. Power-based control of physical systems. Automatica 46, 127–132 (2010) – 10.1016/j.automatica.2009.10.012
- Brayton, R. K. & Moser, J. K. A theory of nonlinear networks. I. Quart. Appl. Math. 22, 1–33 (1964) – 10.1090/qam/169746
- Luo, Z.-H., Guo, B.-Z. & Morgul, O. Stability and Stabilization of Infinite Dimensional Systems with Applications. Communications and Control Engineering (Springer London, 1999). doi:10.1007/978-1-4471-0419-3 – 10.1007/978-1-4471-0419-3
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Jeltsema, D., Ortega, R. & M.A. Scherpen, J. An energy-balancing perspective of interconnection and damping assignment control of nonlinear systems. Automatica 40, 1643–1646 (2004) – 10.1016/j.automatica.2004.04.007
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. FnT in Systems and Control 1, 173–378 (2014) – 10.1561/2600000002
- macchelli, Modeling and Control of Complex Physical Systems: The Port-Hamiltonian Approach. ch Infinite-Dimensional Port-Hamiltonian Systems (2009)
- Villegas, J. A., Zwart, H., Le Gorrec, Y., Maschke, B. & van der Schaft, A. J. Stability and Stabilization of a Class of Boundary Control Systems. Proceedings of the 44th IEEE Conference on Decision and Control 3850–3855 doi:10.1109/cdc.2005.1582762 – 10.1109/cdc.2005.1582762
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM J. Control Optim. 44, 1864–1892 (2005) – 10.1137/040611677
- Schoberl, M. & Siuka, A. On Casimir Functionals for Infinite-Dimensional Port-Hamiltonian Control Systems. IEEE Trans. Automat. Contr. 58, 1823–1828 (2013) – 10.1109/tac.2012.2235739
- Olver, P. J. Applications of Lie Groups to Differential Equations. Graduate Texts in Mathematics (Springer New York, 1993). doi:10.1007/978-1-4612-4350-2 – 10.1007/978-1-4612-4350-2
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Rodriguez, H., van der Schaft, A. J. & Ortega, R. On stabilization of nonlinear distributed parameter port-controlled Hamiltonian systems via energy shaping. Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228) vol. 1 131–136 – 10.1109/cdc.2001.980086
- maschke, Port controlled Hamiltonian systems: modeling origins and system theoretic properties. Nonlinear Control Systems (NOLCOS 1992) Proceedings of the 3rd IFAC Symposium on (1992)
- Brayton, R. K. & Miranker, W. L. A stability theory for nonlinear mixed initial boundary value problems. Arch. Rational Mech. Anal. 17, 358–376 (1964) – 10.1007/bf00250472
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Trans. Automat. Contr. 54, 142–147 (2009) – 10.1109/tac.2008.2007176
- Curtain, R. F. & Zwart, H. An Introduction to Infinite-Dimensional Linear Systems Theory. Texts in Applied Mathematics (Springer New York, 1995). doi:10.1007/978-1-4612-4224-6 – 10.1007/978-1-4612-4224-6
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Trans. Automat. Contr. 59, 2849–2855 (2014) – 10.1109/tac.2014.2315754
- Hamroun, B., Dimofte, A., Lefèvre, L. & Mendes, E. Control by Interconnection and Energy-Shaping Methods of Port Hamiltonian Models. Application to the Shallow Water Equations. European Journal of Control 16, 545–563 (2010) – 10.3166/ejc.16.545-563
- van der schaft, Modeling and Control of Complex Physical Systems: The Port-Hamiltonian Approach. Port Hamiltonian Systems (2009)