A port-Hamiltonian Fluid-Structure Interaction Model for the Vocal folds
Authors
Luis A. Mora, Juan I. Yuz, Hector Ramirez, Yann Le Gorrec
Abstract
Fluid-structure interaction models are of special interest for studying the energy transfer between the moving fluid and the mechanical structure in contact. The vocal folds are an example of a fluid-structure system, where the mechanical structure is usually modeled as a mass-spring-damper system. In particular, the estimation of the collision forces of the vocal folds is of high interest in the diagnosis of phonotraumatic voice pathologies. In this context, the port-Hamiltonian modeling framework focuses on the energy flux in the model and the interacting forces. In this paper, we develop a port-Hamiltonian fluid-structure interaction model based on the interconnection methodology proposed by Lopes and Hélie (2016).
Keywords
Dynamic modeling; port-Hamiltonian model; fluid-structure interaction; vocal folds
Citation
- Journal: IFAC-PapersOnLine
- Year: 2018
- Volume: 51
- Issue: 3
- Pages: 62–67
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2018.06.016
- Note: 6th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2018
BibTeX
@article{Mora_2018,
title={{A port-Hamiltonian Fluid-Structure Interaction Model for the Vocal folds}},
volume={51},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2018.06.016},
number={3},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Mora, Luis A. and Yuz, Juan I. and Ramirez, Hector and Gorrec, Yann Le},
year={2018},
pages={62--67}
}
References
- Bird, (2014)
- Cardoso-Ribeiro, F. L., Matignon, D. & Pommier-Budinger, V. A port-Hamiltonian model of liquid sloshing in moving containers and application to a fluid-structure system. Journal of Fluids and Structures vol. 69 402–427 (2017) – 10.1016/j.jfluidstructs.2016.12.007
- Encina, M., Yuz, J., Zanartu, M. & Galindo, G. Vocal fold modeling through the port-Hamiltonian systems approach. 2015 IEEE Conference on Control Applications (CCA) 1558–1563 (2015) doi:10.1109/cca.2015.7320832 – 10.1109/cca.2015.7320832
- Gerritsen, On Switched Hamiltonian Systems. (2002)
- Hager, Losses in Flow. (2010)
- Hamamoto, M., Ohta, Y., Hara, K. & Hisada, T. Design of Flexible Wing for Flapping Flight by Fluid-Structure Interaction Analysis. Proceedings of the 2005 IEEE International Conference on Robotics and Automation 2253–2258 doi:10.1109/robot.2005.1570448 – 10.1109/robot.2005.1570448
- Ishizaka, K. & Flanagan, J. L. Synthesis of Voiced Sounds From a Two-Mass Model of the Vocal Cords. Bell System Technical Journal vol. 51 1233–1268 (1972) – 10.1002/j.1538-7305.1972.tb02651.x
- Lopes, N. & Hélie, T. Energy Balanced Model of a Jet Interacting With a Brass Player’s Lip. Acta Acustica united with Acustica vol. 102 141–154 (2016) – 10.3813/aaa.918931
- Story, B. H. & Titze, I. R. Voice simulation with a body-cover model of the vocal folds. The Journal of the Acoustical Society of America vol. 97 1249–1260 (1995) – 10.1121/1.412234
- van der Schaft, A. J. & Camlibel, M. K. A state transfer principle for switching port-Hamiltonian systems. Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference 45–50 (2009) doi:10.1109/cdc.2009.5400785 – 10.1109/cdc.2009.5400785
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002