A privacy preserving distributed controller for the general formation of multi-agent systems in port-Hamiltonian form
Authors
Jingyi Zhao, Yongxin Wu, Yuhu Wu, Yann Le Gorrec
Abstract
This paper considers the general formation control problem under the port-Hamiltonian framework and proposes a method to meet the requirements of general formation control while protecting agent privacy. First, the general formation control problem is expressed as an optimization problem whose solution satisfies the requirements of the general formation. To protect the sensitive data of each agent, a distributed controller is designed through the desired general formation output dynamic, which still maintains a port-Hamiltonian form, making the Hamiltonian function the natural choice for the Lyapunov function candidate. It is then shown that the designed system converges exponentially to the global optimum of the optimization problem. Finally, simulations on an application case, namely underactuated unmanned surface vehicles with different parameters are provided to verify the effectiveness of the proposed method.
Keywords
General formation control; Port-Hamiltonian systems; Distributed control; Multi-agent systems; Privacy preserving
Citation
- Journal: Automatica
- Year: 2025
- Volume: 179
- Issue:
- Pages: 112452
- Publisher: Elsevier BV
- DOI: 10.1016/j.automatica.2025.112452
BibTeX
@article{Zhao_2025,
title={{A privacy preserving distributed controller for the general formation of multi-agent systems in port-Hamiltonian form}},
volume={179},
ISSN={0005-1098},
DOI={10.1016/j.automatica.2025.112452},
journal={Automatica},
publisher={Elsevier BV},
author={Zhao, Jingyi and Wu, Yongxin and Wu, Yuhu and Gorrec, Yann Le},
year={2025},
pages={112452}
}
References
- Abdolmaleki, B. & Bergna-Diaz, G. Distributed Control and Optimization of DC Microgrids: A Port-Hamiltonian Approach. IEEE Access 10, 64222–64233 (2022) – 10.1109/access.2022.3183209
- Aryankia, K. & Selmic, R. R. Neural Network-Based Formation Control With Target Tracking for Second-Order Nonlinear Multiagent Systems. IEEE Trans. Aerosp. Electron. Syst. 58, 328–341 (2022) – 10.1109/taes.2021.3111719
- Astolfi, A. & Ortega, R. Immersion and invariance: a new tool for stabilization and adaptive control of nonlinear systems. IEEE Trans. Automat. Contr. 48, 590–606 (2003) – 10.1109/tac.2003.809820
- Choudhury, (2022)
- Deng, Z. Game-Based Formation Control of High-Order Multi-Agent Systems. IEEE Trans. Netw. Sci. Eng. 10, 140–151 (2023) – 10.1109/tnse.2022.3205659
- Deng, Z. & Liang, S. Distributed algorithms for aggregative games of multiple heterogeneous Euler–Lagrange systems. Automatica 99, 246–252 (2019) – 10.1016/j.automatica.2018.10.041
- Deng, Q., Liu, K. & Zhang, Y. Privacy-Preserving Consensus of Double-Integrator Multi-Agent Systems With Input Constraints. IEEE Trans. Emerg. Top. Comput. Intell. 8, 4119–4129 (2024) – 10.1109/tetci.2024.3386692
- Donaire, A. & Junco, S. On the addition of integral action to port-controlled Hamiltonian systems. Automatica 45, 1910–1916 (2009) – 10.1016/j.automatica.2009.04.006
- El‐Ferik, S., Qureshi, A. & Lewis, F. L. Robust neuro‐adaptive cooperative control of multi‐agent port‐controlled Hamiltonian systems. Adaptive Control & Signal 30, 488–510 (2015) – 10.1002/acs.2589
- Feng, S., Kawano, Y., Cucuzzella, M. & Scherpen, J. M. A. Output consensus control for linear port-Hamiltonian systems. IFAC-PapersOnLine 55, 230–235 (2022) – 10.1016/j.ifacol.2022.11.057
- Gao, C., Wang, Z., He, X. & Dong, H. Encryption–decryption-based consensus control for multi-agent systems: Handling actuator faults. Automatica 134, 109908 (2021) – 10.1016/j.automatica.2021.109908
- Gould, (2012)
- Han, Z., Guo, K., Xie, L. & Lin, Z. Integrated Relative Localization and Leader–Follower Formation Control. IEEE Trans. Automat. Contr. 64, 20–34 (2019) – 10.1109/tac.2018.2800790
- Jafarian, M., Vos, E., De Persis, C., van der Schaft, A. J. & Scherpen, J. M. A. Formation control of a multi-agent system subject to Coulomb friction. Automatica 61, 253–262 (2015) – 10.1016/j.automatica.2015.08.021
- Jafarian, M., Vos, E., De Persis, C., Scherpen, J. & van der Schaft, A. Disturbance rejection in formation keeping control of nonholonomic wheeled robots. Int. J. Robust. Nonlinear Control 26, 3344–3362 (2016) – 10.1002/rnc.3510
- Javanmardi, N., Yaghmaei, A. & Yazdanpanah, M. J. Spacecraft formation flying in the port-Hamiltonian framework. Nonlinear Dyn 99, 2765–2783 (2020) – 10.1007/s11071-019-05445-0
- Jing, G. & Wang, L. Multiagent Flocking With Angle-Based Formation Shape Control. IEEE Trans. Automat. Contr. 65, 817–823 (2020) – 10.1109/tac.2019.2917143
- Lagendijk, R. L. & Barni, M. Encrypted signal processing for privacy protection: Conveying the utility of homomorphic encryption and multiparty computation. IEEE Signal Process. Mag. 30, 82–105 (2013) – 10.1109/msp.2012.2219653
- Li, Angle-based formation stabilization and maneuvers in port-Hamiltonian form with bearing and velocity measurements. Automatica (2023)
- Li, N., Sun, Z., van der Schaft, A. & Scherpen, J. M. A. A port-Hamiltonian framework for displacement-based and rigid formation tracking. Automatica 177, 112350 (2025) – 10.1016/j.automatica.2025.112350
- Lv, C. et al. A hybrid coordination controller for speed and heading control of underactuated unmanned surface vehicles system. Ocean Engineering 176, 222–230 (2019) – 10.1016/j.oceaneng.2019.02.007
- Masroor, S., Peng, C., Ali, Z. A. & Aamir, M. Network Based Speed Synchronization Control in the Brush DC Motors Via LQR and Multi-agent Consensus Scheme. Wireless Pers Commun 106, 1701–1718 (2018) – 10.1007/s11277-018-5381-6
- Norman, T. W. L. Dynamically stable sets in infinite strategy spaces. Games and Economic Behavior 62, 610–627 (2008) – 10.1016/j.geb.2007.05.005
- Oh, K.-K., Park, M.-C. & Ahn, H.-S. A survey of multi-agent formation control. Automatica 53, 424–440 (2015) – 10.1016/j.automatica.2014.10.022
- Petrovic, V., Ortega, R. & Stankovi, A. M. Interconnection and damping assignment approach to control of PM synchronous motors. IEEE Trans. Contr. Syst. Technol. 9, 811–820 (2001) – 10.1109/87.960344
- Rockafellar, (1997)
- Roza, A., Maggiore, M. & Scardovi, L. A Smooth Distributed Feedback for Formation Control of Unicycles. IEEE Trans. Automat. Contr. 64, 4998–5011 (2019) – 10.1109/tac.2019.2904152
- Ruan, M., Gao, H. & Wang, Y. Secure and Privacy-Preserving Consensus. IEEE Trans. Automat. Contr. 64, 4035–4049 (2019) – 10.1109/tac.2019.2890887
- Tang, Y., Zhang, D., Shi, P., Zhang, W. & Qian, F. Event-Based Formation Control for Nonlinear Multiagent Systems Under DoS Attacks. IEEE Trans. Automat. Contr. 66, 452–459 (2021) – 10.1109/tac.2020.2979936
- Van der Schaft, Port-Hamiltonian systems: An introductory survey. (2006)
- van der Schaft, A. J. & Maschke, B. M. Port-Hamiltonian Systems on Graphs. SIAM J. Control Optim. 51, 906–937 (2013) – 10.1137/110840091
- Vos, E., Scherpen, J. M. A. & van der Schaft, A. J. Equal distribution of satellite constellations on circular target orbits. Automatica 50, 2641–2647 (2014) – 10.1016/j.automatica.2014.08.027
- Vos, E., van der Schaft, A. J. & Scherpen, J. M. A. Formation Control and Velocity Tracking for a Group of Nonholonomic Wheeled Robots. IEEE Trans. Automat. Contr. 61, 2702–2707 (2016) – 10.1109/tac.2015.2504547
- Wang, Y. Privacy-Preserving Average Consensus via State Decomposition. IEEE Trans. Automat. Contr. 64, 4711–4716 (2019) – 10.1109/tac.2019.2902731
- Wang, Y. & Nedić, A. Differentially Private Distributed Algorithms for Aggregative Games With Guaranteed Convergence. IEEE Trans. Automat. Contr. 69, 5168–5183 (2024) – 10.1109/tac.2024.3351068
- Wei, J. & Zhu, B. Model predictive control for trajectory-tracking and formation of wheeled mobile robots. Neural Comput & Applic 34, 16351–16365 (2022) – 10.1007/s00521-022-07195-4
- Yang, Z., Yu, L., Liu, Y., Alotaibi, N. D. & Alsaadi, F. E. Event-triggered privacy-preserving bipartite consensus for multi-agent systems based on encryption. Neurocomputing 503, 162–172 (2022) – 10.1016/j.neucom.2022.06.074
- Yang, T., Yu, S. & Yan, Y. Formation control of multiple underwater vehicles subject to communication faults and uncertainties. Applied Ocean Research 82, 109–116 (2019) – 10.1016/j.apor.2018.10.024
- Ye, M., Hu, G., Xie, L. & Xu, S. Differentially Private Distributed Nash Equilibrium Seeking for Aggregative Games. IEEE Trans. Automat. Contr. 67, 2451–2458 (2022) – 10.1109/tac.2021.3075183
- Zhang, C. & Wang, Y. Enabling Privacy-Preservation in Decentralized Optimization. IEEE Trans. Control Netw. Syst. 6, 679–689 (2019) – 10.1109/tcns.2018.2873152
- Zhu, L., Chen, Z. & Middleton, R. H. A General Framework for Robust Output Synchronization of Heterogeneous Nonlinear Networked Systems. IEEE Trans. Automat. Contr. 61, 2092–2107 (2016) – 10.1109/tac.2015.2492141