Equal distribution of satellite constellations on circular target orbits
Authors
Ewoud Vos, Jacquelien M.A. Scherpen, Arjan J. van der Schaft
Abstract
This paper addresses the problem of equal distribution of satellite constellations on circular target orbits. The control goal is to make the constellation converge to a circular target orbit, while spatially distributing the satellites at equal inter-satellite distances. The solution is defined in the port-Hamiltonian framework, which gives a clear physical interpretation of the obtained control laws, insight into the energy consumption and complete stability proofs. The controller consists of two parts: the internal control system steers each individual satellite to the target orbit, the external control system equally distributes the satellite constellation. Numerical simulation results are given to illustrate the effectiveness of the approach.
Keywords
Multi-agent systems; Asymptotic stabilization; Guidance, navigation and control of vehicles; Mission control and operations; Port-Hamiltonian systems; Distributed control
Citation
- Journal: Automatica
- Year: 2014
- Volume: 50
- Issue: 10
- Pages: 2641–2647
- Publisher: Elsevier BV
- DOI: 10.1016/j.automatica.2014.08.027
BibTeX
@article{Vos_2014,
title={{Equal distribution of satellite constellations on circular target orbits}},
volume={50},
ISSN={0005-1098},
DOI={10.1016/j.automatica.2014.08.027},
number={10},
journal={Automatica},
publisher={Elsevier BV},
author={Vos, Ewoud and Scherpen, Jacquelien M.A. and van der Schaft, Arjan J.},
year={2014},
pages={2641--2647}
}
References
- Alfriend, (2010)
- Bollobás, (1998)
- Chung, S.-J., Ahsun, U. & Slotine, J.-J. E. Application of Synchronization to Formation Flying Spacecraft: Lagrangian Approach. Journal of Guidance, Control, and Dynamics vol. 32 512–526 (2009) – 10.2514/1.37261
- Duindam, (2009)
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica vol. 39 2059–2069 (2003) – 10.1016/j.automatica.2003.07.005
- Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters vol. 42 217–227 (2001) – 10.1016/s0167-6911(00)00091-8
- Kristiansen, R. & Nicklasson, P. J. Spacecraft formation flying: A review and new results on state feedback control. Acta Astronautica vol. 65 1537–1552 (2009) – 10.1016/j.actaastro.2009.04.014
- McInnes, C. R. Autonomous ring formation for a planar constellation of satellites. Journal of Guidance, Control, and Dynamics vol. 18 1215–1217 (1995) – 10.2514/3.21531
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Scharf, A survey of spacecraft formation flying guidance and control (part ii): control. (2004)
- Scharf, D. P., Hadaegh, F. Y. & Ploen, S. R. A survey of spacecraft formation flying guidance and control (part 1): guidance. Proceedings of the 2003 American Control Conference, 2003. vol. 2 1733–1739 – 10.1109/acc.2003.1239845
- Ulybyshev, Y. Long-Term Formation Keeping of Satellite Constellation Using Linear-Quadratic Controller. Journal of Guidance, Control, and Dynamics vol. 21 109–115 (1998) – 10.2514/2.4204
- van der Schaft, (2000)
- van der Schaft, A. J. & Maschke, B. M. Port-Hamiltonian Systems on Graphs. SIAM Journal on Control and Optimization vol. 51 906–937 (2013) – 10.1137/110840091