Spacecraft formation flying in the port-Hamiltonian framework
Authors
Najmeh Javanmardi, Abolfazl Yaghmaei, Mohammad Javad Yazdanpanah
Abstract
The problem of controlling the relative position and velocity in multi-spacecraft formation flying in the planetary orbits is an enabling technology for current and future research. This paper proposes a family of tracking controllers for different dynamics of Spacecraft Formation Flying (SFF) in the framework of port-Hamiltonian (pH) systems through application of timed Interconnection and Damping Assignment Passivity-Based Control (IDA-PBC). The leader–multi-follower architecture is used to address this problem. In this regard, first we model the spacecraft motion in the pH framework in the Earth Centered Inertial frame and then transform it to the Hill frame which is a special local coordinate system. By this technique, we may present a unified structure which encompasses linear/nonlinear dynamics, with/without perturbation. Then, using the timed IDA-PBC method and the contraction analysis, a new method for controlling a family of SFF dynamics is developed. The numerical simulations show the efficiency of the approach in two different cases of missions.
Keywords
Spacecraft formation flying; Port-Hamiltonian systems; Trajectory tracking; Timed IDA-PBC technique
Citation
- Journal: Nonlinear Dynamics
- Year: 2020
- Volume: 99
- Issue: 4
- Pages: 2765–2783
- Publisher: Springer Science and Business Media LLC
- DOI: 10.1007/s11071-019-05445-0
BibTeX
@article{Javanmardi_2020,
title={{Spacecraft formation flying in the port-Hamiltonian framework}},
volume={99},
ISSN={1573-269X},
DOI={10.1007/s11071-019-05445-0},
number={4},
journal={Nonlinear Dynamics},
publisher={Springer Science and Business Media LLC},
author={Javanmardi, Najmeh and Yaghmaei, Abolfazl and Yazdanpanah, Mohammad Javad},
year={2020},
pages={2765--2783}
}
References
- K Alfriend. Alfriend, K., Gurfil, P.: Spacecraft Formation Flying: Dynamics, Control and Navigation, ser. Astrodynamics Series. Elsevier, Amsterdam (2010) (2010)
- Aoues, S., Cardoso-Ribeiro, F. L., Matignon, D. & Alazard, D. Modeling and Control of a Rotating Flexible Spacecraft: A Port-Hamiltonian Approach. IEEE Transactions on Control Systems Technology vol. 27 355–362 (2019) – 10.1109/tcst.2017.2771244
- Chung, S.-J., Ahsun, U. & Slotine, J.-J. E. Application of Synchronization to Formation Flying Spacecraft: Lagrangian Approach. Journal of Guidance, Control, and Dynamics vol. 32 512–526 (2009) – 10.2514/1.37261
- H Curtis. Curtis, H.: Orbital Mechanics: For Engineering Students, ser. Aerospace Engineering. Elsevier, Amsterdam (2015) (2015)
- de Queiroz, M. S., Kapila, V. & Yan, Q. Adaptive Nonlinear Control of Multiple Spacecraft Formation Flying. Journal of Guidance, Control, and Dynamics vol. 23 385–390 (2000) – 10.2514/2.4549
- Donaire, A. & Perez, T. Dynamic positioning of marine craft using a port-Hamiltonian framework. Automatica vol. 48 851–856 (2012) – 10.1016/j.automatica.2012.02.022
- Donaire, A., Romero, J. G. & Perez, T. Trajectory tracking passivity-based control for marine vehicles subject to disturbances. Journal of the Franklin Institute vol. 354 2167–2182 (2017) – 10.1016/j.jfranklin.2017.01.012
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- Eyer, J.K.: A dynamics and control algorithm for low earth orbit precision formation flying satellites. Ph.D. dissertation, University of Toronto (2009)
- Gui, H. & Vukovich, G. Dual-quaternion-based adaptive motion tracking of spacecraft with reduced control effort. Nonlinear Dynamics vol. 83 597–614 (2015) – 10.1007/s11071-015-2350-4
- Hui, L. & Li, J. Terminal Sliding Mode Control for Spacecraft Formation Flying. IEEE Transactions on Aerospace and Electronic Systems vol. 45 835–846 (2009) – 10.1109/taes.2009.5259168
- Jian, M.: Formation flying of spacecrafts for monitoring and inspection. Master’s thesis, Lulea University of Technology (2009)
- C Lanczos. Lanczos, C.: The Variational Principles of Mechanics, ser. Dover Books on Physics. Dover Publications, New York (1986) (1986)
- T Lee. Lee, T., Leok, M., McClamroch, N.H.: Global Formulations of Lagrangian and Hamiltonian Dynamics on Manifolds. Springer, Berlin (2017) (2017)
- Liu, G.-P. & Zhang, S. A Survey on Formation Control of Small Satellites. Proceedings of the IEEE vol. 106 440–457 (2018) – 10.1109/jproc.2018.2794879
- Mitchell, J. W. & Richardson, D. L. Invariant Manifold Tracking for First-Order Nonlinear Hill’s Equations. Journal of Guidance, Control, and Dynamics vol. 26 622–627 (2003) – 10.2514/2.5090
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control vol. 10 432–450 (2004) – 10.3166/ejc.10.432-450
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Reyes-Báez, R., van der Schaft, A., Jayawardhana, B., Donaire, A., Pérez, T.: Tracking control of marine craft in the port-hamiltonian framework: a virtual differential passivity approach. In: 2019 18th European Control Conference (ECC), pp. 1636–1641. IEEE, 2019
- Schweighart, S. A. & Sedwick, R. J. High-Fidelity Linearized J Model for Satellite Formation Flight. Journal of Guidance, Control, and Dynamics vol. 25 1073–1080 (2002) – 10.2514/2.4986
- Sherrill, R.: Dynamics and control of satellite relative motion in elliptic orbits using Lyapunov-Floquet theory. Ph.D. dissertation (2013)
- Vaddi, S. S., Vadali, S. R. & Alfriend, K. T. Formation Flying: Accommodating Nonlinearity and Eccentricity Perturbations. Journal of Guidance, Control, and Dynamics vol. 26 214–223 (2003) – 10.2514/2.5054
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Vos, E., Scherpen, J. M. A. & van der Schaft, A. J. Equal distribution of satellite constellations on circular target orbits. Automatica vol. 50 2641–2647 (2014) – 10.1016/j.automatica.2014.08.027
- D Wang. Wang, D., Wu, B., Poh, E.K.: Satellite Formation Flying: Relative Dynamics, Formation Design, Fuel Optimal Maneuvers and Formation Maintenance, vol. 87. Springer, Berlin (2016) (2016)
- Xia, K. & Huo, W. Robust adaptive backstepping neural networks control for spacecraft rendezvous and docking with uncertainties. Nonlinear Dynamics vol. 84 1683–1695 (2016) – 10.1007/s11071-016-2597-4
- Yaghmaei, A. & Yazdanpanah, M. J. Trajectory tracking for a class of contractive port Hamiltonian systems. Automatica vol. 83 331–336 (2017) – 10.1016/j.automatica.2017.06.039
- Zhao, L. & Jia, Y. Decentralized adaptive attitude synchronization control for spacecraft formation using nonsingular fast terminal sliding mode. Nonlinear Dynamics vol. 78 2779–2794 (2014) – 10.1007/s11071-014-1625-5