Robust neuro‐adaptive cooperative control of multi‐agent port‐controlled Hamiltonian systems
Authors
Sami El‐Ferik, Aminuddin Qureshi, Frank L. Lewis
Abstract
This paper presents the distributed cooperative tracking control of the multi‐agent port‐controlled Hamiltonian (PCH) systems that are networked through a directed graph. Controller is made robust against the parametric uncertainties using neural networks. Dynamics of the the proposed novel neural network tuning law is driven by both the position and the velocity errors owing to the information preserving filtering of the Hamiltonian gradient. In addition, the PCH structure of the closed‐loop system is preserved and the controller achieves the disturbance attenuation objective. Simulations are performed on a group of robotic manipulators to demonstrate the efficacy of the proposed controller. Copyright © 2015 John Wiley & Sons, Ltd.
Citation
- Journal: International Journal of Adaptive Control and Signal Processing
- Year: 2016
- Volume: 30
- Issue: 3
- Pages: 488–510
- Publisher: Wiley
- DOI: 10.1002/acs.2589
BibTeX
@article{El_Ferik_2015,
title={{Robust neuro‐adaptive cooperative control of multi‐agent port‐controlled Hamiltonian systems}},
volume={30},
ISSN={1099-1115},
DOI={10.1002/acs.2589},
number={3},
journal={International Journal of Adaptive Control and Signal Processing},
publisher={Wiley},
author={El‐Ferik, Sami and Qureshi, Aminuddin and Lewis, Frank L.},
year={2015},
pages={488--510}
}
References
- Cao, Y., Yu, W., Ren, W. & Chen, G. An Overview of Recent Progress in the Study of Distributed Multi-Agent Coordination. IEEE Trans. Ind. Inf. 9, 427–438 (2013) – 10.1109/tii.2012.2219061
- Secchi C, Control of Interactive Robotic Interfaces: A Port‐Hamiltonian Approach (2007)
- Schaft VA, ‐gain and Passivity Techniques in Nonlinear Control (1999)
- Maschke, B., Ortega, R. & Van Der Schaft, A. J. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Trans. Automat. Contr. 45, 1498–1502 (2000) – 10.1109/9.871758
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters 42, 217–227 (2001) – 10.1016/s0167-6911(00)00091-8
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica 39, 2059–2069 (2003) – 10.1016/j.automatica.2003.07.005
- Wang, Z. & Goldsmith, P. Modified energy-balancing-based control for the tracking problem. IET Control Theory Appl. 2, 310–322 (2008) – 10.1049/iet-cta:20070124
- Arcak, M. Passivity as a Design Tool for Group Coordination. IEEE Trans. Automat. Contr. 52, 1380–1390 (2007) – 10.1109/tac.2007.902733
- Chopra N, Passivity‐based Control of Multi‐agent Systems (2007)
- Sheng LC, Protocol design for output consensus of port‐controlled Hamiltonian systems. Acta Automatica Sinica (2003)
- Suiyang Khoo, Lihua Xie & Zhihong Man. Robust Finite-Time Consensus Tracking Algorithm for Multirobot Systems. IEEE/ASME Trans. Mechatron. 14, 219–228 (2009) – 10.1109/tmech.2009.2014057
- Shen, T., Ortega, R., Lu, Q., Mei, S. & Tamura, K. Adaptive L2 Disturbance Attenuation Of Hamiltonian Systems With Parametric Perturbation And Application To Power Systems. Asian Journal of Control 5, 143–152 (2003) – 10.1111/j.1934-6093.2003.tb00105.x
- Dirksz, D. A. & Scherpen, J. M. A. Power-based control: Canonical coordinate transformations, integral and adaptive control. Automatica 48, 1045–1056 (2012) – 10.1016/j.automatica.2012.03.003
- Dirksz, D. A. & Scherpen, J. M. A. Structure Preserving Adaptive Control of Port-Hamiltonian Systems. IEEE Trans. Automat. Contr. 57, 2880–2885 (2012) – 10.1109/tac.2012.2192359
- Slotine JJE, Applied Nonlinear Control (1991)
- Lewis FL, Neural Network Control of Robot Manipulator and Nonlinear Systems (1998)
- Ren, W. & Beard, R. W. Distributed Consensus in Multi-Vehicle Cooperative Control. Communications and Control Engineering (Springer London, 2008). doi:10.1007/978-1-84800-015-5 – 10.1007/978-1-84800-015-5
- Zhang, H. & Lewis, F. L. Adaptive cooperative tracking control of higher-order nonlinear systems with unknown dynamics. Automatica 48, 1432–1439 (2012) – 10.1016/j.automatica.2012.05.008
- Dirksz, D. A. & Scherp, J. M. A. Adaptive tracking control of fully actuated port-Hamiltonian mechanical systems. 2010 IEEE International Conference on Control Applications 1678–1683 (2010) doi:10.1109/cca.2010.5611301 – 10.1109/cca.2010.5611301
- Igelnik, B. & Yoh-Han Pao. Stochastic choice of basis functions in adaptive function approximation and the functional-link net. IEEE Trans. Neural Netw. 6, 1320–1329 (1995) – 10.1109/72.471375
- Narendra, K. & Annaswamy, A. A new adaptive law for robust adaptation without persistent excitation. IEEE Trans. Automat. Contr. 32, 134–145 (1987) – 10.1109/tac.1987.1104543
- Yuzhen Wang, Daizhan Cheng, Chunwen Li & You Ge. Dissipative hamiltonian realization and energy-based L/sub 2/-disturbance attenuation control of multimachine power systems. IEEE Trans. Automat. Contr. 48, 1428–1433 (2003) – 10.1109/tac.2003.815037
- Yu H, Energy‐shaping and gain disturbance attenuation control of induction motor. International Journal of Innovative Computing, Information and Control (2012)
- van der Schaft, A. J. L/sub 2/-gain analysis of nonlinear systems and nonlinear state-feedback H/sub infinity / control. IEEE Trans. Automat. Contr. 37, 770–784 (1992) – 10.1109/9.256331