Formation Control and Velocity Tracking for a Group of Nonholonomic Wheeled Robots
Authors
Ewoud Vos, Arjan J. van der Schaft, Jacquelien M. A. Scherpen
Abstract
This technical note presents an integrated approach for formation control and velocity tracking of a group of nonholonomic wheeled robots. The solution is defined within the port-Hamiltonian framework, providing a clear interpretation of the results. The controller consists of a local nonlinear heading and velocity tracking controller combined with a distributed formation controller. The formation controller achieves formations by assigning virtual couplings in between the robots. Experimental results are provided to illustrate the effectiveness of the approach.
Citation
- Journal: IEEE Transactions on Automatic Control
- Year: 2016
- Volume: 61
- Issue: 9
- Pages: 2702–2707
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/tac.2015.2504547
BibTeX
@article{Vos_2016,
title={{Formation Control and Velocity Tracking for a Group of Nonholonomic Wheeled Robots}},
volume={61},
ISSN={2334-3303},
DOI={10.1109/tac.2015.2504547},
number={9},
journal={IEEE Transactions on Automatic Control},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Vos, Ewoud and van der Schaft, Arjan J. and Scherpen, Jacquelien M. A.},
year={2016},
pages={2702--2707}
}
References
- Kurabayashi, D., Ota, J., Arai, T. & Yoshida, E. Cooperative sweeping by multiple mobile robots. Proceedings of IEEE International Conference on Robotics and Automation vol. 2 1744–1749 – 10.1109/robot.1996.506964
- Lee, D. Passivity-Based Switching Control for Stabilization of Wheeled Mobile Robots. Robotics: Science and Systems III (2007) doi:10.15607/rss.2007.iii.008 – 10.15607/rss.2007.iii.008
- mondada, The e-puck, a robot designed for education in engineering. Proc Conf Autonomous Robot Systems and Competitions (0)
- Obermeyer, K. J., Ganguli, A. & Bullo, F. Multi‐agent deployment for visibility coverage in polygonal environments with holes. International Journal of Robust and Nonlinear Control vol. 21 1467–1492 (2011) – 10.1002/rnc.1700
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- van der Schaft, A. J. & Maschke, B. M. Port-Hamiltonian Systems on Graphs. SIAM Journal on Control and Optimization vol. 51 906–937 (2013) – 10.1137/110840091
- Vos, E., Scherpen, J. M. A., Schaft, A. J. van der & Postma, A. Formation Control of Wheeled Robots in the Port-Hamiltonian Framework. IFAC Proceedings Volumes vol. 47 6662–6667 (2014) – 10.3182/20140824-6-za-1003.00394
- Choset, H. Annals of Mathematics and Artificial Intelligence vol. 31 113–126 (2001) – 10.1023/a:1016639210559
- brockett, Asymptotic Stability and Feedback Stabilization (1983)
- Dirksz, D. A. & Scherpen, J. M. A. On Tracking Control of Rigid-Joint Robots With Only Position Measurements. IEEE Transactions on Control Systems Technology vol. 21 1510–1513 (2013) – 10.1109/tcst.2012.2204886
- Cortes, J., Martinez, S., Karatas, T. & Bullo, F. Coverage Control for Mobile Sensing Networks. IEEE Transactions on Robotics and Automation vol. 20 243–255 (2004) – 10.1109/tra.2004.824698
- Ghabcheloo, R., Pascoal, A., Silvestre, C. & Kaminer, I. Coordinated path following control of multiple wheeled robots using linearization techniques. International Journal of Systems Science vol. 37 399–414 (2006) – 10.1080/00207720500438324
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica vol. 39 2059–2069 (2003) – 10.1016/j.automatica.2003.07.005
- Bai, H., Arcak, M. & Wen, J. Cooperative Control Design. Communications and Control Engineering (Springer New York, 2011). doi:10.1007/978-1-4614-0014-1 – 10.1007/978-1-4614-0014-1
- Arcak, M. Passivity as a Design Tool for Group Coordination. IEEE Transactions on Automatic Control vol. 52 1380–1390 (2007) – 10.1109/tac.2007.902733
- Godsil, C. & Royle, G. Algebraic Graph Theory. Graduate Texts in Mathematics (Springer New York, 2001). doi:10.1007/978-1-4613-0163-9 – 10.1007/978-1-4613-0163-9