Structure-Preserving Discretization of a Coupled Heat-Wave System, as Interconnected Port-Hamiltonian Systems
Authors
Ghislain Haine, Denis Matignon
Abstract
The heat-wave system is recast as the coupling of port-Hamiltonian subsystems (pHs), and discretized in a structure-preserving way by the Partitioned Finite Element Method (PFEM) [ 10 , 11 ]. Then, depending on the geometric configuration of the two domains, different asymptotic behaviours of the energy of the coupled system can be recovered at the numerical level, assessing the validity of the theoretical results of [ 22 ].
Keywords
Port-Hamiltonian Systems; Partitioned finite element method; Long time asymptotics
Citation
- ISBN: 9783030802080
- Publisher: Springer International Publishing
- DOI: 10.1007/978-3-030-80209-7_22
- Note: International Conference on Geometric Science of Information
BibTeX
@inbook{Haine_2021,
title={{Structure-Preserving Discretization of a Coupled Heat-Wave System, as Interconnected Port-Hamiltonian Systems}},
ISBN={9783030802097},
ISSN={1611-3349},
DOI={10.1007/978-3-030-80209-7_22},
booktitle={{Geometric Science of Information}},
publisher={Springer International Publishing},
author={Haine, Ghislain and Matignon, Denis},
year={2021},
pages={191--199}
}
References
- Altmann, R. & Schulze, P. A port-Hamiltonian formulation of the Navier–Stokes equations for reactive flows. Systems & Control Letters vol. 100 51–55 (2017) – 10.1016/j.sysconle.2016.12.005
- Avalos, G., Lasiecka, I. & Triggiani, R. Heat–wave interaction in 2–3 dimensions: Optimal rational decay rate. Journal of Mathematical Analysis and Applications vol. 437 782–815 (2016) – 10.1016/j.jmaa.2015.12.051
- W Bauer. Bauer, W., Gay-Balmaz, F.: Towards a geometric variational discretization of compressible fluids: the rotating shallow water equations. J. Comput. Dyn. 6(1), 1–37 (2019) (2019)
- Beattie, C., Mehrmann, V., Xu, H. & Zwart, H. Linear port-Hamiltonian descriptor systems. Mathematics of Control, Signals, and Systems vol. 30 (2018) – 10.1007/s00498-018-0223-3
- Boffi, D., Brezzi, F. & Fortin, M. Mixed Finite Element Methods and Applications. Springer Series in Computational Mathematics (Springer Berlin Heidelberg, 2013). doi:10.1007/978-3-642-36519-5 – 10.1007/978-3-642-36519-5
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian formulation and symplectic discretization of plate models Part I: Mindlin model for thick plates. Applied Mathematical Modelling vol. 75 940–960 (2019) – 10.1016/j.apm.2019.04.035
- Brugnoli, A., Alazard, D., Pommier-Budinger, V. & Matignon, D. Port-Hamiltonian formulation and symplectic discretization of plate models Part II: Kirchhoff model for thin plates. Applied Mathematical Modelling vol. 75 961–981 (2019) – 10.1016/j.apm.2019.04.036
- Brugnoli, A., Cardoso-Ribeiro, F. L., Haine, G. & Kotyczka, P. Partitioned finite element method for structured discretization with mixed boundary conditions. IFAC-PapersOnLine vol. 53 7557–7562 (2020) – 10.1016/j.ifacol.2020.12.1351
- A. Brugnoli, G. Haine, A. Serhani & Vasseur, X. Supplementary material for ‘Numerical approximation of port-Hamiltonian systems for hyperbolic or parabolic PDEs with boundary control’. Zenodo https://doi.org/10.5281/ZENODO.3938600 (2020) – 10.5281/zenodo.3938600
- Cardoso-Ribeiro, F. L., Matignon, D. & Lefèvre, L. A structure-preserving Partitioned Finite Element Method for the 2D wave equation. IFAC-PapersOnLine vol. 51 119–124 (2018) – 10.1016/j.ifacol.2018.06.033
- Cardoso-Ribeiro, F. L., Matignon, D. & Lefèvre, L. A partitioned finite element method for power-preserving discretization of open systems of conservation laws. IMA Journal of Mathematical Control and Information vol. 38 493–533 (2020) – 10.1093/imamci/dnaa038
- Cardoso-Ribeiro, F. L., Matignon, D. & Pommier-Budinger, V. Port-Hamiltonian model of two-dimensional shallow water equations in moving containers. IMA Journal of Mathematical Control and Information vol. 37 1348–1366 (2020) – 10.1093/imamci/dnaa016
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica vol. 43 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Egger, H. Structure preserving approximation of dissipative evolution problems. Numerische Mathematik vol. 143 85–106 (2019) – 10.1007/s00211-019-01050-w
- Mehrmann, V. & Morandin, R. Structure-preserving discretization for port-Hamiltonian descriptor systems. 2019 IEEE 58th Conference on Decision and Control (CDC) 6863–6868 (2019) doi:10.1109/cdc40024.2019.9030180 – 10.1109/cdc40024.2019.9030180
- Serhani, A., Haine, G. & Matignon, D. Anisotropic heterogeneous n-D heat equation with boundary control and observation: I. Modeling as port-Hamiltonian system. IFAC-PapersOnLine vol. 52 51–56 (2019) – 10.1016/j.ifacol.2019.07.009
- Serhani, A., Haine, G. & Matignon, D. Anisotropic heterogeneous n-D heat equation with boundary control and observation: II. Structure-preserving discretization. IFAC-PapersOnLine vol. 52 57–62 (2019) – 10.1016/j.ifacol.2019.07.010
- Serhani, A., Matignon, D. & Haine, G. A Partitioned Finite Element Method for the Structure-Preserving Discretization of Damped Infinite-Dimensional Port-Hamiltonian Systems with Boundary Control. Lecture Notes in Computer Science 549–558 (2019) doi:10.1007/978-3-030-26980-7_57 – 10.1007/978-3-030-26980-7_57
- Serhani, A., Matignon, D. & Haine, G. Partitioned Finite Element Method for port-Hamiltonian systems with Boundary Damping: Anisotropic Heterogeneous 2D wave equations. IFAC-PapersOnLine vol. 52 96–101 (2019) – 10.1016/j.ifacol.2019.08.017
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Zhang, X. & Zuazua, E. Long-Time Behavior of a Coupled Heat-Wave System Arising in Fluid-Structure Interaction. Archive for Rational Mechanics and Analysis vol. 184 49–120 (2006) – 10.1007/s00205-006-0020-x