Stabilization of Unstable Distributed Port-Hamiltonian Systems in Scattering Form
Authors
Alessandro Macchelli, Yann Le Gorrec, Hector Ramirez
Abstract
In this letter, we consider the exponential stabilization of a distributed parameter port-Hamiltonian system interconnected with an unstable finite-dimensional linear system at its free end and control input at the opposite one. The infinite-dimensional system can also have in-domain anti-damping. The control design passes through the definition of a finite-dimensional linear system that “embeds” the response of the distributed parameter model, and that can be stabilized by acting on the available control input. The conditions that link the exponential stability of the latter system with the exponential stability of the original one are obtained thanks to a Lyapunov analysis. Simulations are presented to show the pros and cons of the proposed synthesis methodology.
Citation
- Journal: IEEE Control Systems Letters
- Year: 2022
- Volume: 6
- Issue:
- Pages: 3116–3121
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/lcsys.2022.3182967
BibTeX
@article{Macchelli_2022,
title={{Stabilization of Unstable Distributed Port-Hamiltonian Systems in Scattering Form}},
volume={6},
ISSN={2475-1456},
DOI={10.1109/lcsys.2022.3182967},
journal={IEEE Control Systems Letters},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Macchelli, Alessandro and Le Gorrec, Yann and Ramirez, Hector},
year={2022},
pages={3116--3121}
}
References
- Hayat, A. Boundary stabilization of 1D hyperbolic systems. Annual Reviews in Control vol. 52 222–242 (2021) – 10.1016/j.arcontrol.2021.10.009
- Bastin, G. & Coron, J.-M. On boundary feedback stabilization of non-uniform linear hyperbolic systems over a bounded interval. Systems & Control Letters vol. 60 900–906 (2011) – 10.1016/j.sysconle.2011.07.008
- van der Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer International Publishing, 2017). doi:10.1007/978-3-319-49992-5 – 10.1007/978-3-319-49992-5
- Curtain, R. F. & Zwart, H. An Introduction to Infinite-Dimensional Linear Systems Theory. Texts in Applied Mathematics (Springer New York, 1995). doi:10.1007/978-1-4612-4224-6 – 10.1007/978-1-4612-4224-6
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Macchelli, A., Le Gorrec, Y. & Ramirez, H. Exponential Stabilization of Port-Hamiltonian Boundary Control Systems via Energy Shaping. IEEE Transactions on Automatic Control vol. 65 4440–4447 (2020) – 10.1109/tac.2020.3004798
- Macchelli, A., Gorrec, Y. L., Wu, Y. & Ramírez, H. Energy-based Control of a Wave Equation with Boundary Anti-damping. IFAC-PapersOnLine vol. 53 7740–7745 (2020) – 10.1016/j.ifacol.2020.12.1527
- strikwerda, Finite Difference Schemes and Partial Differential Equations (2004)
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Transactions on Automatic Control vol. 59 2849–2855 (2014) – 10.1109/tac.2014.2315754
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Macchelli, A. & Califano, F. Dissipativity-based boundary control of linear distributed port-Hamiltonian systems. Automatica vol. 95 54–62 (2018) – 10.1016/j.automatica.2018.05.029
- Macchelli, A., Le Gorrec, Y., Ramirez, H. & Zwart, H. On the Synthesis of Boundary Control Laws for Distributed Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 62 1700–1713 (2017) – 10.1109/tac.2016.2595263
- Artstein, Z. Linear systems with delayed controls: A reduction. IEEE Transactions on Automatic Control vol. 27 869–879 (1982) – 10.1109/tac.1982.1103023
- Di Meglio, F., Argomedo, F. B., Hu, L. & Krstic, M. Stabilization of coupled linear heterodirectional hyperbolic PDE–ODE systems. Automatica vol. 87 281–289 (2018) – 10.1016/j.automatica.2017.09.027
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Mattioni, M., Monaco, S. & Normand-Cyrot, D. IDA-PBC for LTI Dynamics Under Input Delays: A Reduction Approach. IEEE Control Systems Letters vol. 5 1465–1470 (2021) – 10.1109/lcsys.2020.3040076