Energy-based Control of a Wave Equation with Boundary Anti-damping
Authors
A. Macchelli, Y. Le Gorrec, Y. Wu, H. Ramírez
Abstract
In this paper, we consider the asymptotic boundary stabilisation of a one-dimensional wave equation subject to anti-damping at its free end and with control at the opposite one. The control action, implemented through a state feedback or a dynamic controller, is derived by using the port-Hamiltonian framework. More precisely, the standard energy-shaping approach plus damping assignment is adapted to cope with infinite dimensional systems with anti-damping boundary conditions. It is shown how to modify the equivalent dynamic controller to account for the instability propagation along the domain.
Keywords
distributed parameter systems; port-Hamiltonian systems; unstable wave equation; passivity-based control
Citation
- Journal: IFAC-PapersOnLine
- Year: 2020
- Volume: 53
- Issue: 2
- Pages: 7740–7745
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2020.12.1527
- Note: 21st IFAC World Congress- Berlin, Germany, 11–17 July 2020
BibTeX
@article{Macchelli_2020,
title={{Energy-based Control of a Wave Equation with Boundary Anti-damping}},
volume={53},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2020.12.1527},
number={2},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Macchelli, A. and Gorrec, Y. Le and Wu, Y. and Ramírez, H.},
year={2020},
pages={7740--7745}
}
References
- Fattorini, H. O. Boundary Control Systems. SIAM Journal on Control vol. 6 349–385 (1968) – 10.1137/0306025
- Freitas, P. & Zuazua, E. Stability Results for the Wave Equation with Indefinite Damping. Journal of Differential Equations vol. 132 338–352 (1996) – 10.1006/jdeq.1996.0183
- Hassine, F. Rapid Exponential Stabilization of a 1‐D Transmission Wave Equation with In‐domain Anti‐damping. Asian Journal of Control vol. 19 2017–2027 (2017) – 10.1002/asjc.1509
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Luo, (1999)
- Macchelli, A. Dirac structures on Hilbert spaces and boundary control of distributed port-Hamiltonian systems. Systems & Control Letters vol. 68 43–50 (2014) – 10.1016/j.sysconle.2014.03.005
- Macchelli, A. On the control by interconnection and exponential stabilisation of infinite dimensional port-Hamiltonian systems. 2016 IEEE 55th Conference on Decision and Control (CDC) 3137–3142 (2016) doi:10.1109/cdc.2016.7798739 – 10.1109/cdc.2016.7798739
- Macchelli, A., Borja, L. P. & Ortega, R. Control by Interconnection of Distributed Port-Hamiltonian Systems Beyond the Dissipation Obstacle. IFAC-PapersOnLine vol. 48 99–104 (2015) – 10.1016/j.ifacol.2015.10.221
- Macchelli, A., Le Gorrec, Y., Ramirez, H. & Zwart, H. On the Synthesis of Boundary Control Laws for Distributed Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 62 1700–1713 (2017) – 10.1109/tac.2016.2595263
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Olver, (1993)
- Ortega, Putting energy back in control. (2001)
- Rodriguez, On stabilization of nonlinear distributed parameter port-controlled Hamiltonian systems via energy shaping. In Decision and Control (CDC 2001). Proceedings of the 40th IEEE Conference on (2001)
- Smyshlyaev, A. & Krstic, M. Boundary control of an anti-stable wave equation with anti-damping on the uncontrolled boundary. Systems & Control Letters vol. 58 617–623 (2009) – 10.1016/j.sysconle.2009.04.005
- van der Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer International Publishing, 2017). doi:10.1007/978-3-319-49992-5 – 10.1007/978-3-319-49992-5
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3