Stabilization of a class of mixed ODE–PDE port-Hamiltonian systems with strong dissipation feedback
Authors
Andrea Mattioni, Yongxin Wu, Yann Le Gorrec, Hans Zwart
Abstract
This paper deals with the asymptotic stabilization of a class of port-Hamiltonian (pH) 1-D Partial Differential Equations (PDE) with spatial varying parameters, interconnected with a class of linear Ordinary Differential Equations (ODE), with control input on the ODE. The class of considered ODE contains the effect of a proportional term, that can be considered as the proportional action of a controller or a spring in case of mechanical systems. In this particular case of study, it is not possible to directly add damping on the boundary of the PDE. To remedy this problem we propose a control law that makes use of a “strong feedback” term. We first prove that the closed-loop operator generates a contraction strongly continuous semigroup, then we address the asymptotic stability making use of a Lyapunov argument, taking advantage of the pH structure of the original system to be controlled. Furthermore, we apply the proposed control law for the stabilization of a vibrating string with a tip mass and we show the simulation results compared with the application of a simple PD controller.
Keywords
Distributed-parameter system; Strong feedback control; Asymptotic stability; Numerical simulations; Port-Hamiltonian systems
Citation
- Journal: Automatica
- Year: 2022
- Volume: 142
- Issue:
- Pages: 110284
- Publisher: Elsevier BV
- DOI: 10.1016/j.automatica.2022.110284
BibTeX
@article{Mattioni_2022,
title={{Stabilization of a class of mixed ODE–PDE port-Hamiltonian systems with strong dissipation feedback}},
volume={142},
ISSN={0005-1098},
DOI={10.1016/j.automatica.2022.110284},
journal={Automatica},
publisher={Elsevier BV},
author={Mattioni, Andrea and Wu, Yongxin and Le Gorrec, Yann and Zwart, Hans},
year={2022},
pages={110284}
}
References
- Aoues, S., Cardoso-Ribeiro, F. L., Matignon, D. & Alazard, D. Modeling and Control of a Rotating Flexible Spacecraft: A Port-Hamiltonian Approach. IEEE Transactions on Control Systems Technology vol. 27 355–362 (2019) – 10.1109/tcst.2017.2771244
- Augner, (2018)
- Banavar, R. & Dey, B. Stabilizing a Flexible Beam on a Cart: A Distributed Port-Hamiltonian Approach. Journal of Nonlinear Science vol. 20 131–151 (2009) – 10.1007/s00332-009-9054-1
- Conrad, F. & Morgül, Ö. On the Stabilization of a Flexible Beam with a Tip Mass. SIAM Journal on Control and Optimization vol. 36 1962–1986 (1998) – 10.1137/s0363012996302366
- Curtain, (1995)
- Curtain, (2020)
- d’ Andréa-Novel, B. & Coron, J. M. Exponential stabilization of an overhead crane with flexible cable via a back-stepping approach. Automatica vol. 36 587–593 (2000) – 10.1016/s0005-1098(99)00182-x
- de Queiroz, M. S., Dawson, D. M., Agarwal, M. & Zhang, F. Adaptive nonlinear boundary control of a flexible link robot arm. IEEE Transactions on Robotics and Automation vol. 15 779–787 (1999) – 10.1109/70.782034
- de Queiroz, M. S., Dawson, D. M. & Zhang, F. Boundary control of a rotating flexible body-beam system. Proceedings of the 1997 IEEE International Conference on Control Applications 812–817 doi:10.1109/cca.1997.627761 – 10.1109/cca.1997.627761
- Deutscher, J. A backstepping approach to the output regulation of boundary controlled parabolic PDEs. Automatica vol. 57 56–64 (2015) – 10.1016/j.automatica.2015.04.008
- Deutscher, J., Gehring, N. & Kern, R. Output feedback control of general linear heterodirectional hyperbolic ODE–PDE–ODE systems. Automatica vol. 95 472–480 (2018) – 10.1016/j.automatica.2018.06.021
- Deutscher, J., Gehring, N. & Kern, R. Output feedback control of general linear heterodirectional hyperbolic PDE-ODE systems with spatially-varying coefficients. International Journal of Control vol. 92 2274–2290 (2018) – 10.1080/00207179.2018.1436770
- Endo, T., Sasaki, M., Matsuno, F. & Jia, Y. Contact-Force Control of a Flexible Timoshenko Arm in Rigid/Soft Environment. IEEE Transactions on Automatic Control vol. 62 2546–2553 (2017) – 10.1109/tac.2016.2599434
- Jacob, B., Morris, K. & Zwart, H. C 0-semigroups for hyperbolic partial differential equations on a one-dimensional spatial domain. Journal of Evolution Equations vol. 15 493–502 (2015) – 10.1007/s00028-014-0271-1
- Jacob, (2012)
- Le Gorrec, A semigroup approach to port-Hamiltonian systems associated with linear skew symmetric operator. (2004)
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Macchelli, A., Le Gorrec, Y., Ramirez, H. & Zwart, H. On the Synthesis of Boundary Control Laws for Distributed Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 62 1700–1713 (2017) – 10.1109/tac.2016.2595263
- Macchelli, A. & Melchiorri, C. Control by interconnection of mixed port Hamiltonian systems. IEEE Transactions on Automatic Control vol. 50 1839–1844 (2005) – 10.1109/tac.2005.858656
- Mattioni, Stabilisation of a rotating beam clamped on a moving inertia with strong dissipation feedback. (2020)
- Di Meglio, F., Argomedo, F. B., Hu, L. & Krstic, M. Stabilization of coupled linear heterodirectional hyperbolic PDE–ODE systems. Automatica vol. 87 281–289 (2018) – 10.1016/j.automatica.2017.09.027
- Morgul, O., Bo Peng Rao & Conrad, F. On the stabilization of a cable with a tip mass. IEEE Transactions on Automatic Control vol. 39 2140–2145 (1994) – 10.1109/9.328811
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Transactions on Automatic Control vol. 59 2849–2855 (2014) – 10.1109/tac.2014.2315754
- Ramirez, H., Zwart, H. & Le Gorrec, Y. Stabilization of infinite dimensional port-Hamiltonian systems by nonlinear dynamic boundary control. Automatica vol. 85 61–69 (2017) – 10.1016/j.automatica.2017.07.045
- Rao, B. Uniform Stabilization of a Hybrid System of Elasticity. SIAM Journal on Control and Optimization vol. 33 440–454 (1995) – 10.1137/s0363012992239879
- Trenchant, V., Ramirez, H., Le Gorrec, Y. & Kotyczka, P. Finite differences on staggered grids preserving the port-Hamiltonian structure with application to an acoustic duct. Journal of Computational Physics vol. 373 673–697 (2018) – 10.1016/j.jcp.2018.06.051
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Villegas, (2007)
- Villegas, J. A., Zwart, H., Le Gorrec, Y., Maschke, B. & van der Schaft, A. J. Stability and Stabilization of a Class of Boundary Control Systems. Proceedings of the 44th IEEE Conference on Decision and Control 3850–3855 doi:10.1109/cdc.2005.1582762 – 10.1109/cdc.2005.1582762
- Wang, J. & Krstic, M. Output Feedback Boundary Control of a Heat PDE Sandwiched Between Two ODEs. IEEE Transactions on Automatic Control vol. 64 4653–4660 (2019) – 10.1109/tac.2019.2901704
- Weldegiorgis, R., Krishna, P. & Gangadharan, K. V. Vibration Control of Smart Cantilever Beam Using Strain Rate Feedback. Procedia Materials Science vol. 5 113–122 (2014) – 10.1016/j.mspro.2014.07.248