Research on rehabilitation robot control based on port-Hamiltonian systems and fatigue dissipation port compensation
Authors
Jingjing Li, Zhen Chen, Jian Li, Hongyu Yan, Zhen Li, Minshan Feng, Jiawen Zhan, Liwei Shao
Abstract
IntroductionUpper-limb rehabilitation robots have been demonstrated to effectively promote motor recovery in stroke patients. However, in active training modes, control instability may be induced by the nonlinear and time-varying characteristics of muscle fatigue, increasing the risks of physical human-robot interaction and ultimately limiting rehabilitation outcomes.MethodsA novel control strategy within the port-Hamiltonian framework, incorporating a dynamic muscle fatigue model. Fatigue levels were assessed in real time using surface electromyography (sEMG) signals and mapped to damping parameters in joint space, enabling the port-based modeling of fatigue-related energy dissipation. A hierarchical control architecture was constructed, consisting of outer-loop admittance control and inner-loop energy shaping.ResultsTheoretical analysis confirmed that the closed-loop passivity of the system was preserved and stability was ensured. Experimental validation further showed that, compared to fixed damping parameters, the proposed fatigue compensation approach reduced muscle fatigue accumulation by 45% and increased training duration by 40%.DiscussionThe proposed fatigue-adaptive control framework was shown to enhance the safety, effectiveness, and physiological adaptability of rehabilitation training. The integration of real-time sEMG feedback and port-Hamiltonian modeling offers a promising solution for personalized robotic rehabilitation.
Citation
- Journal: Frontiers in Bioengineering and Biotechnology
- Year: 2025
- Volume: 13
- Issue:
- Pages:
- Publisher: Frontiers Media SA
- DOI: 10.3389/fbioe.2025.1609548
BibTeX
@article{Li_2025,
title={{Research on rehabilitation robot control based on port-Hamiltonian systems and fatigue dissipation port compensation}},
volume={13},
ISSN={2296-4185},
DOI={10.3389/fbioe.2025.1609548},
journal={Frontiers in Bioengineering and Biotechnology},
publisher={Frontiers Media SA},
author={Li, Jingjing and Chen, Zhen and Li, Jian and Yan, Hongyu and Li, Zhen and Feng, Minshan and Zhan, Jiawen and Shao, Liwei},
year={2025}
}
References
- Ai, Q., Liu, Z., Meng, W., Liu, Q. & Xie, S. Q. Uncertainty Compensated High-Order Adaptive Iteration Learning Control for Robot-Assisted Upper Limb Rehabilitation. IEEE Trans. Automat. Sci. Eng. 21, 7004–7015 (2024) – 10.1109/tase.2023.3335401
- Cai, S., Xie, P., Li, G. & Xie, L. Compensation-corrective adaptive control strategy for upper-limb rehabilitation robots. Robotics and Autonomous Systems 177, 104701 (2024) – 10.1016/j.robot.2024.104701
- Fujimoto, K., Sakata, N., Maruta, I. & Ferguson, J. A Passivity Based Sliding Mode Controller for Simple Port-Hamiltonian Systems. IEEE Control Syst. Lett. 5, 839–844 (2021) – 10.1109/lcsys.2020.3005327
- Ghajari, S., Moghaddam, R., Kobravi, H. & Pariz, N. Muscle Fatigue Regulation through Muscle Activation Control in a Knee Hybrid Exoskeleton: Simulation Study. Machines 11, 937 (2023) – 10.3390/machines11100937
- DOI not foun – 10.3389/frobt.2018.00108/frobt.2018.00108
- Groothuis, S. S., Stramigioli, S. & Carloni, R. Modeling Robotic Manipulators Powered by Variable Stiffness Actuators: A Graph-Theoretic and Port-Hamiltonian Formalism. IEEE Trans. Robot. 33, 807–818 (2017) – 10.1109/tro.2017.2668385
- Kim, S.-K., Kim, Y. & Ahn, C. K. Energy-Shaping Speed Controller With Time-Varying Damping Injection for Permanent-Magnet Synchronous Motors. IEEE Trans. Circuits Syst. II 68, 381–385 (2021) – 10.1109/tcsii.2020.2992260
- Lai, Y., Sutjipto, S., Clout, M. D., Carmichael, M. G. & Paul, G. GAVRe2: Towards Data-Driven Upper-Limb Rehabilitation with Adaptive-Feedback Gamification. 2018 IEEE International Conference on Robotics and Biomimetics (ROBIO) 164–169 (2018) doi:10.1109/robio.2018.8665105 – 10.1109/robio.2018.8665105
- Li, J., Li, G., Chen, Z. & Li, J. A Novel EMG-Based Variable Impedance Control Method for a Tele-Operation System Under an Unstructured Environment. IEEE Access 10, 89509–89518 (2022) – 10.1109/access.2022.3200696
- Liu, C., Zhao, K., Si, W., Li, J. & Yang, C. Neuroadaptive Admittance Control for Human-Robot Interaction With Human Motion Intention Estimation and Output Error Constraint. IEEE Trans. Cybern. 55, 3005–3016 (2025) – 10.1109/tcyb.2025.3555104
- Lynch, Modern robotics: mechanics, planning, and control (2021)
- Mahfouz, D. M., Shehata, O. M., Morgan, E. I. & Arrichiello, F. A Comprehensive Review of Control Challenges and Methods in End-Effector Upper-Limb Rehabilitation Robots. Robotics 13, 181 (2024) – 10.3390/robotics13120181
- Mashayekhi, M. & Moghaddam, M. M. EMG-driven fatigue-based self-adapting admittance control of a hand rehabilitation robot. Journal of Biomechanics 138, 111104 (2022) – 10.1016/j.jbiomech.2022.111104
- DOI not foun – 10.1109/tro.2022.31835322022.3183532
- Rashad, R., Califano, F. & Stramigioli, S. Port-Hamiltonian Passivity-Based Control on SE(3) of a Fully Actuated UAV for Aerial Physical Interaction Near-Hovering. IEEE Robot. Autom. Lett. 4, 4378–4385 (2019) – 10.1109/lra.2019.2932864
- Sakata, N., Fujimoto, K. & Maruta, I. Passivity-Based Sliding Mode Control for Mechanical Port-Hamiltonian Systems. IEEE Trans. Automat. Contr. 69, 5605–5612 (2024) – 10.1109/tac.2024.3371898
- Sandoval, J., Kelly, R., Santibáñez, V., Moreno-Valenzuela, J. & Cervantes-Pérez, L. Partial Potential Energy Shaping Control of Torque-Driven Robot Manipulators in Joint Space. Int. J. Control Autom. Syst. 22, 2230–2241 (2024) – 10.1007/s12555-022-1196-z
- DOI not foun – 10.1371/journal.pone.0233545pone.0233545
- Tian, D. et al. Data-driven estimation for uphill continuous rehabilitation motion at different slopes using sEMG. Biomedical Signal Processing and Control 93, 106162 (2024) – 10.1016/j.bspc.2024.106162
- Tian, D. et al. Self-Balancing Exoskeleton Robots Designed to Facilitate Multiple Rehabilitation Training Movements. IEEE Trans. Neural Syst. Rehabil. Eng. 32, 293–303 (2024) – 10.1109/tnsre.2023.3348985
- Vafadar, A. K., Côté, J. N. & Archambault, P. S. The Effect of Muscle Fatigue on Position Sense in an Upper Limb Multi-joint Task. Motor Control 16, 265–283 (2012) – 10.1123/mcj.16.2.265
- Wan, J., Qin, Z., Wang, P., Sun, Y. & Liu, X. Muscle fatigue: general understanding and treatment. Exp Mol Med 49, e384–e384 (2017) – 10.1038/emm.2017.194
- Liang, X. et al. Adaptive Human–Robot Interaction Torque Estimation With High Accuracy and Strong Tracking Ability for a Lower Limb Rehabilitation Robot. IEEE/ASME Trans. Mechatron. 29, 4814–4825 (2024) – 10.1109/tmech.2024.3394491
- Zhang, Y.-P., Cao, G.-Z., Li, L.-L. & Diao, D.-F. Interactive Control of Lower Limb Exoskeleton Robots: A Review. IEEE Sensors J. 24, 5759–5784 (2024) – 10.1109/jsen.2024.3352005
- Zhou, J., Li, Z., Li, X., Wang, X. & Song, R. Human–Robot Cooperation Control Based on Trajectory Deformation Algorithm for a Lower Limb Rehabilitation Robot. IEEE/ASME Trans. Mechatron. 26, 3128–3138 (2021) – 10.1109/tmech.2021.3053562