Port-Hamiltonian Passivity-Based Control on SE(3) of a Fully Actuated UAV for Aerial Physical Interaction Near-Hovering
Authors
Ramy Rashad, Federico Califano, Stefano Stramigioli
Abstract
In this work, we approach the control problem of fully-actuated UAVs in a geometric port-Hamiltonian framework. The UAV is modeled as a floating rigid body on the special Euclidean group SE(3). A unified near-hovering motion and impedance controller is derived by the energy-balancing passivity-based control technique. A detailed analysis of the closed-loop system’s behavior is presented for both the free-flight stability and contact stability of the UAV. The robustness of the control system to uncertainties is validated by several experiments, in which the UAV is controlled near its actuator limits. The experiments show the ability of the UAV to hover at its maximum allowed roll angle and apply its maximum allowed normal force to a surface, without the input saturation destabilizing the system.
Citation
- Journal: IEEE Robotics and Automation Letters
- Year: 2019
- Volume: 4
- Issue: 4
- Pages: 4378–4385
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/lra.2019.2932864
BibTeX
@article{Rashad_2019,
title={{Port-Hamiltonian Passivity-Based Control on SE(3) of a Fully Actuated UAV for Aerial Physical Interaction Near-Hovering}},
volume={4},
ISSN={2377-3774},
DOI={10.1109/lra.2019.2932864},
number={4},
journal={IEEE Robotics and Automation Letters},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Rashad, Ramy and Califano, Federico and Stramigioli, Stefano},
year={2019},
pages={4378--4385}
}
References
- Hogan, N. Impedance Control: An Approach to Manipulation. 1984 American Control Conference (1984) doi:10.23919/acc.1984.4788393 – 10.23919/acc.1984.4788393
- Acosta, J. A., Sanchez, M. I. & Ollero, A. Robust control of underactuated Aerial Manipulators via IDA-PBC. 53rd IEEE Conference on Decision and Control 673–678 (2014) doi:10.1109/cdc.2014.7039459 – 10.1109/cdc.2014.7039459
- Yüksel, B., Secchi, C., Bülthoff, H. H. & Franchi, A. Aerial physical interaction via IDA-PBC. The International Journal of Robotics Research vol. 38 403–421 (2019) – 10.1177/0278364919835605
- Fasse, E. D. & Broenink, J. F. A spatial impedance controller for robotic manipulation. IEEE Transactions on Robotics and Automation vol. 13 546–556 (1997) – 10.1109/70.611315
- Fasse, E. D. On the Spatial Compliance of Robotic Manipulators. Journal of Dynamic Systems, Measurement, and Control vol. 119 839–844 (1997) – 10.1115/1.2802402
- stramigioli, Modeling and IPC Control of Interactive Mechanical System - A Coordinate-free Approach (2001)
- Rashad, R., Engelen, J. B. C. & Stramigioli, S. Energy Tank-Based Wrench/Impedance Control of a Fully-Actuated Hexarotor: A Geometric Port-Hamiltonian Approach. 2019 International Conference on Robotics and Automation (ICRA) 6418–6424 (2019) doi:10.1109/icra.2019.8793939 – 10.1109/icra.2019.8793939
- murray, A Mathematical Introduction to Robotic Manipulation (1994)
- Stramigioli, S. & Bruyninckx, H. Non-intrinsicity of references in rigid body motions. Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065) vol. 1 13–18 – 10.1109/robot.2000.844033
- van der Schaft, A. J. & Maschke, B. M. Port-Hamiltonian Systems on Graphs. SIAM Journal on Control and Optimization vol. 51 906–937 (2013) – 10.1137/110840091
- Park, S. et al. ODAR: Aerial Manipulation Platform Enabling Omnidirectional Wrench Generation. IEEE/ASME Transactions on Mechatronics vol. 23 1907–1918 (2018) – 10.1109/tmech.2018.2848255
- Park, S., Her, J., Kim, J. & Lee, D. Design, modeling and control of omni-directional aerial robot. 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 1570–1575 (2016) doi:10.1109/iros.2016.7759254 – 10.1109/iros.2016.7759254
- Ryll, M. et al. 6D physical interaction with a fully actuated aerial robot. 2017 IEEE International Conference on Robotics and Automation (ICRA) 5190–5195 (2017) doi:10.1109/icra.2017.7989608 – 10.1109/icra.2017.7989608
- Kamel, M. et al. The Voliro Omniorientational Hexacopter: An Agile and Maneuverable Tiltable-Rotor Aerial Vehicle. IEEE Robotics & Automation Magazine vol. 25 34–44 (2018) – 10.1109/mra.2018.2866758
- Duffy, J. The fallacy of modern hybrid control theory that is based on “orthogonal complements” of twist and wrench spaces. Journal of Robotic Systems vol. 7 139–144 (1990) – 10.1002/rob.4620070202
- Jiang, G., Voyles, R. M. & Choi, J. J. Precision Fully-Actuated UAV for Visual and Physical Inspection of Structures for Nuclear Decommissioning and Search and Rescue. 2018 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR) 1–7 (2018) doi:10.1109/ssrr.2018.8468628 – 10.1109/ssrr.2018.8468628
- Brescianini, D. & D’Andrea, R. Design, modeling and control of an omni-directional aerial vehicle. 2016 IEEE International Conference on Robotics and Automation (ICRA) 3261–3266 (2016) doi:10.1109/icra.2016.7487497 – 10.1109/icra.2016.7487497
- Ruggiero, F., Lippiello, V. & Ollero, A. Aerial Manipulation: A Literature Review. IEEE Robotics and Automation Letters vol. 3 1957–1964 (2018) – 10.1109/lra.2018.2808541
- Bullo, F. & Murray, R. M. Tracking for fully actuated mechanical systems: a geometric framework. Automatica vol. 35 17–34 (1999) – 10.1016/s0005-1098(98)00119-8
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- bullo, Geometric control of mechanical systems modeling analysis and design for simple mechanical control systems (2004)
- stramigioli, Variable spatial springs for robot control. Proc IEEE/RSJ Int Conf Intell Robot Syst (0)