Modeling Robotic Manipulators Powered by Variable Stiffness Actuators: A Graph-Theoretic and Port-Hamiltonian Formalism
Authors
Stefan S. Groothuis, Stefano Stramigioli, Raffaella Carloni
Abstract
This paper proposes a modeling method for generic compliant robotic manipulators. It is based on graph theory and the port-Hamiltonian formalism, which allows a modular approach to the interconnection of rigid bodies with compliant actuators by means of kinematic pairs. This modularity enables a simple and straight-forward adaption the model when a manipulator’s actuator morphology is changed. An example of a spatial three degree-of-freedom manipulator shows that this modeling method is more suitable for modeling changes in actuator placement than the traditional Euler–Lagrange method.
Citation
- Journal: IEEE Transactions on Robotics
- Year: 2017
- Volume: 33
- Issue: 4
- Pages: 807–818
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/tro.2017.2668385
BibTeX
@article{Groothuis_2017,
title={{Modeling Robotic Manipulators Powered by Variable Stiffness Actuators: A Graph-Theoretic and Port-Hamiltonian Formalism}},
volume={33},
ISSN={1941-0468},
DOI={10.1109/tro.2017.2668385},
number={4},
journal={IEEE Transactions on Robotics},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Groothuis, Stefan S. and Stramigioli, Stefano and Carloni, Raffaella},
year={2017},
pages={807--818}
}
References
- marieb, Human Anatomy and Physiology (2006)
- Macchelli, A., Melchiorri, C. & Stramigioli, S. Port-Based Modeling and Simulation of Mechanical Systems With Rigid and Flexible Links. IEEE Transactions on Robotics vol. 25 1016–1029 (2009) – 10.1109/tro.2009.2026504
- Voronov, A. V. The Roles of Monoarticular and Biarticular Muscles of the Lower Limbs in Terrestrial Locomotion. Human Physiology vol. 30 476–484 (2004) – 10.1023/b:hump.0000036345.33099.4f
- Carroll, A. M. & Biewener, A. A. Mono-versusbiarticular muscle function in relation to speed and gait changes:in vivoanalysis of the goat triceps brachii. Journal of Experimental Biology vol. 212 3349–3360 (2009) – 10.1242/jeb.033639
- Groothuis, S. S., Stramigioli, S. & Carloni, R. Compliant robotic systems on graphs. 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems 3898–3903 (2014) doi:10.1109/iros.2014.6943110 – 10.1109/iros.2014.6943110
- Tonetti, S. & Masarati, P. Graph-Based Modeling of Nonhomogeneous One-Dimensional Multibody Systems With Arbitrary Topology. Journal of Computational and Nonlinear Dynamics vol. 6 (2011) – 10.1115/1.4003030
- Lang, S. Y. T. & Kesavan, H. K. Graph theoretic modeling and analysis of multibody planar mechanical systems. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans vol. 31 97–111 (2001) – 10.1109/3468.911367
- Lang, S. Y. T. & Kesevan, H. K. Dynamics of planar mechanical systems: a graph theoretic approach. 1996 IEEE International Conference on Systems, Man and Cybernetics. Information Intelligence and Systems (Cat. No.96CH35929) vol. 4 3077–3082 – 10.1109/icsmc.1996.561476
- Baciu, G., Chou, J. C. K. & Kesavan, H. K. Constrained multibody systems: graph-theoretic Newton-Euler formulation. IEEE Transactions on Systems, Man, and Cybernetics vol. 20 1025–1048 (1990) – 10.1109/21.59967
- hai-bo, Coordination control of networked euler-lagrange systems with possible switching topology. Acta Autom Sin (2013)
- Ren, W. Distributed leaderless consensus algorithms for networked Euler–Lagrange systems. International Journal of Control vol. 82 2137–2149 (2009) – 10.1080/00207170902948027
- Rahmani Hanzaki, A., Saha, S. K. & Rao, P. V. M. An improved dynamic modeling of a multibody system with spherical joints. Multibody System Dynamics vol. 21 325–345 (2009) – 10.1007/s11044-008-9141-3
- Visser, L. C., Carloni, R. & Stramigioli, S. Energy-Efficient Variable Stiffness Actuators. IEEE Transactions on Robotics vol. 27 865–875 (2011) – 10.1109/tro.2011.2150430
- De Luca, A. & Book, W. Robots with Flexible Elements. Springer Handbook of Robotics 287–319 (2008) doi:10.1007/978-3-540-30301-5_14 – 10.1007/978-3-540-30301-5_14
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Groothuis, S. S., Stramigioli, S. & Carloni, R. Lending a helping hand: toward novel assistive robotic arms. IEEE Robotics & Automation Magazine vol. 20 20–29 (2013) – 10.1109/mra.2012.2225473
- Grioli, G. et al. Variable stiffness actuators: The user’s point of view. The International Journal of Robotics Research vol. 34 727–743 (2015) – 10.1177/0278364914566515
- loncaric, Geometrical analysis of compliant mechanisms in robotics (euclidean group, elastic systems, generalized springs). (1985)
- Pratt, G. A. & Williamson, M. M. Series elastic actuators. Proceedings 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots vol. 1 399–406 – 10.1109/iros.1995.525827
- Spong, M. W. Modeling and Control of Elastic Joint Robots. Journal of Dynamic Systems, Measurement, and Control vol. 109 310–318 (1987) – 10.1115/1.3143860
- Wolf, S. et al. Variable Stiffness Actuators: Review on Design and Components. IEEE/ASME Transactions on Mechatronics vol. 21 2418–2430 (2016) – 10.1109/tmech.2015.2501019
- Vanderborght, B. et al. Variable impedance actuators: A review. Robotics and Autonomous Systems vol. 61 1601–1614 (2013) – 10.1016/j.robot.2013.06.009
- spong, Robot Modeling and Control (2005)
- Vanderborght, B. et al. Variable impedance actuators: Moving the robots of tomorrow. 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems 5454–5455 (2012) doi:10.1109/iros.2012.6385433 – 10.1109/iros.2012.6385433
- McPhee, J. J. On the use of linear graph theory in multibody system dynamics. Nonlinear Dynamics vol. 9 73–90 (1996) – 10.1007/bf01833294
- van der Schaft, A. J. & Maschke, B. M. Port-Hamiltonian Systems on Graphs. SIAM Journal on Control and Optimization vol. 51 906–937 (2013) – 10.1137/110840091
- Cáceres, J. et al. Searching for geodetic boundary vertex sets. Electronic Notes in Discrete Mathematics vol. 19 25–31 (2005) – 10.1016/j.endm.2005.05.005
- stramigioli, Modeling and IPC Control of Interactive Mechanical Systems A Coordinate-Free Approach (2001)
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- van der schaft, Port-Hamiltonian systems: An introductory survey. Proc Int Congr Mathematicians (2006)
- Groothuis, S. S., Stramigioli, S. & Carloni, R. Compliant manipulators on graphs. 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 6536–6542 (2015) doi:10.1109/iros.2015.7354311 – 10.1109/iros.2015.7354311