Relationship between dissipativity concepts for linear time-varying port-Hamiltonian systems
Authors
Karim Cherifi, Hannes Gernandt, Dorothea Hinsen, Volker Mehrmann, Riccardo Morandin
Abstract
The relationship between different dissipativity concepts for linear time-varying systems is studied, in particular between port-Hamiltonian systems, passive systems, and systems with nonnegative supply. It is shown that linear time-varying port-Hamiltonian systems are passive, have nonnegative supply rates, and solve (under different smoothness assumptions) Kalman–Yakubovich–Popov differential and integral inequalities. The converse relations are also studied in detail. In particular, sufficient conditions are presented to obtain a port-Hamiltonian representation starting from any of the other dissipativity concepts. Two applications are presented.
Keywords
Port-Hamiltonian system; Passivity; Nonnegativity; Kalman–Yakubovich–Popov inequality; System transformation; 93A30; 65L80; 93B17; 93B11
Citation
- Journal: Mathematics of Control, Signals, and Systems
- Year: 2025
- Volume:
- Issue:
- Pages:
- Publisher: Springer Science and Business Media LLC
- DOI: 10.1007/s00498-025-00421-z
BibTeX
@article{Cherifi_2025,
title={{Relationship between dissipativity concepts for linear time-varying port-Hamiltonian systems}},
ISSN={1435-568X},
DOI={10.1007/s00498-025-00421-z},
journal={Mathematics of Control, Signals, and Systems},
publisher={Springer Science and Business Media LLC},
author={Cherifi, Karim and Gernandt, Hannes and Hinsen, Dorothea and Mehrmann, Volker and Morandin, Riccardo},
year={2025}
}
References
- H Abou-Kandil, Matrix Riccati equations in control and systems theory (2012)
- Anderson, B. & Moylan, P. Synthesis of linear time-varying passive networks. IEEE Trans. Circuits Syst. 21, 678–687 (1974) – 10.1109/tcs.1974.1083926
- Bayan, N. & Erfani, S. Frequency analysis of linear time-varying systems: a new perspective. 48th Midwest Symposium on Circuits and Systems, 2005. 1494-1497 Vol. 2 (2005) doi:10.1109/mwscas.2005.1594396 – 10.1109/mwscas.2005.1594396
- Beattie, C., Mehrmann, V., Xu, H. & Zwart, H. Linear port-Hamiltonian descriptor systems. Math. Control Signals Syst. 30, (2018) – 10.1007/s00498-018-0223-3
- Benner, P. & Mena, H. Rosenbrock Methods for Solving Riccati Differential Equations. IEEE Trans. Automat. Contr. 58, 2950–2956 (2013) – 10.1109/tac.2013.2258495
- S Boyd, Linear matrix inequalities in systems and control theory (1994)
- Bravetti, A., Cruz, H. & Tapias, D. Contact Hamiltonian mechanics. Annals of Physics 376, 17–39 (2017) – 10.1016/j.aop.2016.11.003
- H Brezis, Functional analysis. Sobolev spaces and partial differential equations (2010)
- Brüll, T. Generalizing the Algebraic Riccati Equation to Higher-Order Behavioral Systems. SIAM J. Control Optim. 51, 2544–2567 (2013) – 10.1137/11085013x
- Campbell, S. L. Linearization of DAEs along trajectories. Z. angew. Math. Phys. 46, 70–84 (1995) – 10.1007/bf00952257
- Carothers, N. L. Real Analysis. (2000) doi:10.1017/cbo9780511814228 – 10.1017/cbo9780511814228
- Cecati, F. et al. LTP Modeling and Analysis of Frequency Coupling in PLL-Synchronized Converters for Harmonic Power Flow Studies. IEEE Trans. Smart Grid 14, 2890–2902 (2023) – 10.1109/tsg.2022.3228616
- Cherifi, K., Gernandt, H. & Hinsen, D. The difference between port-Hamiltonian, passive and positive real descriptor systems. Math. Control Signals Syst. 36, 451–482 (2023) – 10.1007/s00498-023-00373-2
- Cherifi, K., Gernandt, H., Hinsen, D. & Mehrmann, V. On discrete-time dissipative port-Hamiltonian (descriptor) systems. Math. Control Signals Syst. 36, 561–599 (2023) – 10.1007/s00498-023-00376-z
- Chu, D. & Mehrmann, V. Port-Hamiltonian representations of positive real descriptor systems. Automatica 180, 112456 (2025) – 10.1016/j.automatica.2025.112456
- Dewilde, P. & van der Veen, A.-J. Time-Varying Systems and Computations. (Springer US, 1998). doi:10.1007/978-1-4757-2817-0 – 10.1007/978-1-4757-2817-0
- Dieci, L. Numerical Integration of the Differential Riccati Equation and Some Related Issues. SIAM J. Numer. Anal. 29, 781–815 (1992) – 10.1137/0729049
- Dieci, L. & Eirola, T. Positive definiteness in the numerical solution of Riccati differential equations. Numerische Mathematik 67, 303–313 (1994) – 10.1007/s002110050030
- Doležal, V. The existence of a continuous basis of a certain linear subspace of $E\sb{r}$ which depends on a parameter. Časopis Pěst. Mat. 089, 466–469 (1964) – 10.21136/cpm.1964.117522
- Eisenmann, M., Emmrich, E. & Mehrmann, V. Convergence of the backward Euler scheme for the operator-valued Riccati differential equation with semi-definite data. Evolution Equations & Control Theory 8, 315–342 (2019) – 10.3934/eect.2019017
- Filippov, A. F. Differential Equations with Discontinuous Righthand Sides. Mathematics and Its Applications (Springer Netherlands, 1988). doi:10.1007/978-94-015-7793-9 – 10.1007/978-94-015-7793-9
- Forbes, J. R. & Damaren, C. J. Passive linear time-varying systems: State-space realizations, stability in feedback, and controller synthesis. Proceedings of the 2010 American Control Conference 1097–1104 (2010) doi:10.1109/acc.2010.5530792 – 10.1109/acc.2010.5530792
- Gernandt, H., Philipp, F. M., Preuster, T. & Schaller, M. On the Equivalence of Geometric and Descriptor Representations of Linear Port-Hamiltonian Systems. Trends in Mathematics 149–165 (2024) doi:10.1007/978-3-031-64991-2_6 – 10.1007/978-3-031-64991-2_6
- H Gernandt, IEEE Trans Transport Electrif (2024)
- Hill, D. J. & Moylan, P. J. Dissipative Dynamical Systems: Basic Input-Output and State Properties. Journal of the Franklin Institute 309, 327–357 (1980) – 10.1016/0016-0032(80)90026-5
- A Ilchmann, Contributions to time-varying linear control systems (1989)
- Jikuya, I. & Hodaka, I. Kalman Canonical Decomposition of Linear Time-Varying Systems. SIAM J. Control Optim. 52, 274–310 (2014) – 10.1137/120873455
- Kalman, R. E. LYAPUNOV FUNCTIONS FOR THE PROBLEM OF LUR’E IN AUTOMATIC CONTROL. Proc. Natl. Acad. Sci. U.S.A. 49, 201–205 (1963) – 10.1073/pnas.49.2.201
- Kamen, E. & Khargonekar, P. A transfer function approach to linear time-varying discrete-time systems. 1982 21st IEEE Conference on Decision and Control 152–157 (1982) doi:10.1109/cdc.1982.268418 – 10.1109/cdc.1982.268418
- Kenney, C. & Leipnik, R. Numerical integration of the differential matrix Riccati equation. IEEE Trans. Automat. Contr. 30, 962–970 (1985) – 10.1109/tac.1985.1103822
- HW Knobloch, Lineare kontrolltheorie (2013)
- Kunkel, P. & Mehrmann, V. Differential-Algebraic Equations. EMS Textbooks in Mathematics (2024) doi:10.4171/etb/28 – 10.4171/etb/28
- Kurula, M. & Staffans, O. A complete model of a finite-dimensional impedance-passive system. Math. Control Signals Syst. 19, 23–63 (2006) – 10.1007/s00498-006-0008-y
- C Laurent-Gengoux, Int Math Res Not (2008)
- Lee, C.-M. An analogue of the theorem of Hake-Alexandroff-Looman. Fund. Math. 100, 69–74 (1978) – 10.4064/fm-100-1-69-74
- Lozano, R., Brogliato, B., Egeland, O. & Maschke, B. Dissipative Systems Analysis and Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-3668-2 – 10.1007/978-1-4471-3668-2
- Machado, J. E., Ferguson, J., Cucuzzella, M. & Scherpen, J. M. A. Decentralized Temperature and Storage Volume Control in Multiproducer District Heating. IEEE Control Syst. Lett. 7, 413–418 (2023) – 10.1109/lcsys.2022.3189321
- Maschke, B. & van der Schaft, A. About the Definition of Port Variables for Contact Hamiltonian Systems. Lecture Notes in Computer Science 418–424 (2017) doi:10.1007/978-3-319-68445-1_49 – 10.1007/978-3-319-68445-1_49
- The Autonomous Linear Quadratic Control Problem. Lecture Notes in Control and Information Sciences (Springer-Verlag, 1991). doi:10.1007/bfb0039443 – 10.1007/bfb0039443
- Mehrmann, V. & Morandin, R. Structure-preserving discretization for port-Hamiltonian descriptor systems. 2019 IEEE 58th Conference on Decision and Control (CDC) 6863–6868 (2019) doi:10.1109/cdc40024.2019.9030180 – 10.1109/cdc40024.2019.9030180
- Mehrmann, V. & Unger, B. Control of port-Hamiltonian differential-algebraic systems and applications. Acta Numerica 32, 395–515 (2023) – 10.1017/s0962492922000083
- Mehrmann, V. & van der Schaft, A. Differential–algebraic systems with dissipative Hamiltonian structure. Math. Control Signals Syst. 35, 541–584 (2023) – 10.1007/s00498-023-00349-2
- MOORE, J. B. & ANDERSON, B. D. O. Extensions of quadratic minimization theory I. Finite time results. International Journal of Control 7, 465–472 (1968) – 10.1080/00207176808905631
- Plastino, A. R. & Muzzio, J. C. On the use and abuse of Newton’s second law for variable mass problems. Celestial Mech Dyn Astr 53, 227–232 (1992) – 10.1007/bf00052611
- VD Ponomarev, Math Notes Acad Sci USSR (1977)
- VM Popov, Studii şi Cercetări de Energetică şi Electrotehnică (1959)
- VM Popov, Rev Roum Sci Tech Sér Électrotech Énerg (1964)
- L. Pouso, R. Nonordered discontinuous upper and lower solutions for first-order ordinary differential equations. Nonlinear Analysis: Theory, Methods & Applications 45, 391–406 (2001) – 10.1016/s0362-546x(99)00347-8
- WT Reid, Riccati differential equations (1972)
- Reis, T., Rendel, O. & Voigt, M. The Kalman–Yakubovich–Popov inequality for differential-algebraic systems. Linear Algebra and its Applications 485, 153–193 (2015) – 10.1016/j.laa.2015.06.021
- Reis, T. & Voigt, M. Linear-Quadratic Optimal Control of Differential-Algebraic Systems: The Infinite Time Horizon Problem with Zero Terminal State. SIAM J. Control Optim. 57, 1567–1596 (2019) – 10.1137/18m1189609
- Rose, M., Gernandt, H., Machado, J. E. & Schiffer, J. Model Predictive Control of District Heating Grids Using Stabilizing Terminal Ingredients. 2024 European Control Conference (ECC) 1090–1096 (2024) doi:10.23919/ecc64448.2024.10591109 – 10.23919/ecc64448.2024.10591109
- Staffans, O. J. Passive and Conservative Infinite-Dimensional Impedance and Scattering Systems (From a Personal Point of View). The IMA Volumes in Mathematics and its Applications 375–413 (2003) doi:10.1007/978-0-387-21696-6_14 – 10.1007/978-0-387-21696-6_14
- K Topolski, Electron J Qual Theory Differ Equ (2017)
- van der Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer International Publishing, 2017). doi:10.1007/978-3-319-49992-5 – 10.1007/978-3-319-49992-5
- van der Schaft, A. & Maschke, B. Generalized port-Hamiltonian DAE systems. Systems & Control Letters 121, 31–37 (2018) – 10.1016/j.sysconle.2018.09.008
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. FnT in Systems and Control 1, 173–378 (2014) – 10.1561/2600000002
- van der Schaft, A. & Jeltsema, D. On Energy Conversion in Port-Hamiltonian Systems. 2021 60th IEEE Conference on Decision and Control (CDC) 2421–2427 (2021) doi:10.1109/cdc45484.2021.9683292 – 10.1109/cdc45484.2021.9683292
- Vidyasagar, M. Nonlinear Systems Analysis. (2002) doi:10.1137/1.9780898719185 – 10.1137/1.9780898719185
- Willems, J. C. Dissipative dynamical systems Part II: Linear systems with quadratic supply rates. Arch. Rational Mech. Anal. 45, 352–393 (1972) – 10.1007/bf00276494
- Zadeh, L. A. Frequency Analysis of Variable Networks. Proc. IRE 38, 291–299 (1950) – 10.1109/jrproc.1950.231083