Port-Hamiltonian representations of positive real descriptor systems
Authors
Abstract
The relationship between port-Hamiltonian and positive real linear time-invariant descriptor systems is investigated. It is well-known that port-Hamiltonian systems are positive real, but the converse implication does not always hold. In Cherifi et al. (2023) sufficient conditions for the converse are presented. We refine these conditions and present for a completely controllable, completely observable and positive real descriptor system a necessary and sufficient condition as well as an explicit method to compute a port-Hamiltonian representation of a general positive real linear time-invariant descriptor system.
Keywords
Port-Hamiltonian descriptor system; Positive real descriptor system; Port-Hamiltonian representation; Controllability; Observability
Citation
- Journal: Automatica
- Year: 2025
- Volume: 180
- Issue:
- Pages: 112456
- Publisher: Elsevier BV
- DOI: 10.1016/j.automatica.2025.112456
BibTeX
@article{Chu_2025,
title={{Port-Hamiltonian representations of positive real descriptor systems}},
volume={180},
ISSN={0005-1098},
DOI={10.1016/j.automatica.2025.112456},
journal={Automatica},
publisher={Elsevier BV},
author={Chu, Delin and Mehrmann, Volker},
year={2025},
pages={112456}
}
References
- Ahmad, Sk. S., Alam, R. & Byers, R. On Pseudospectra, Critical Points, and Multiple Eigenvalues of Matrix Pencils. SIAM J. Matrix Anal. & Appl. 31, 1915–1933 (2010) – 10.1137/070711645
- Anderson, (1973)
- Beattie, C. A., Mehrmann, V. & Van Dooren, P. Robust port-Hamiltonian representations of passive systems. Automatica 100, 182–186 (2019) – 10.1016/j.automatica.2018.11.013
- Bunse-Gerstner, A., Byers, R., Mehrmann, V. & Nichols, N. K. Feedback design for regularizing descriptor systems. Linear Algebra and its Applications 299, 119–151 (1999) – 10.1016/s0024-3795(99)00167-6
- Cherifi, The difference between port-Hamiltonian, passive and positive real descriptor systems. Mathematics of Control, Signals, and Systems (2023)
- Cherifi, K., Gernandt, H., Hinsen, D. & Mehrmann, V. On discrete-time dissipative port-Hamiltonian (descriptor) systems. Math. Control Signals Syst. 36, 561–599 (2023) – 10.1007/s00498-023-00376-z
- Chu, D. L. & Ho, D. W. C. Necessary and sufficient conditions for the output feedback regularization of descriptor systems. IEEE Trans. Automat. Contr. 44, 405–412 (1999) – 10.1109/9.746277
- Chu, (2024)
- Chu, D. & Tan, R. C. E. Algebraic Characterizations for Positive Realness of Descriptor Systems. SIAM J. Matrix Anal. & Appl. 30, 197–222 (2008) – 10.1137/060669061
- Dai, (1989)
- Demmel, J. & Kågström, B. The generalized Schur decomposition of an arbitrary pencil A–λB—robust software with error bounds and applications. Part I. ACM Trans. Math. Softw. 19, 160–174 (1993) – 10.1145/152613.152615
- Freund, R. W. & Jarre, F. An extension of the positive real lemma to descriptor systems. Optimization Methods and Software 19, 69–87 (2004) – 10.1080/10556780410001654232
- Heinkenschloss, M., Sorensen, D. C. & Sun, K. Balanced Truncation Model Reduction for a Class of Descriptor Systems with Application to the Oseen Equations. SIAM J. Sci. Comput. 30, 1038–1063 (2008) – 10.1137/070681910
- Kunkel, Differential-algebraic equations. (2024)
- Mayo, A. J. & Antoulas, A. C. A framework for the solution of the generalized realization problem. Linear Algebra and its Applications 425, 634–662 (2007) – 10.1016/j.laa.2007.03.008
- Mehl, C., Mehrmann, V. & Wojtylak, M. Linear Algebra Properties of Dissipative Hamiltonian Descriptor Systems. SIAM J. Matrix Anal. & Appl. 39, 1489–1519 (2018) – 10.1137/18m1164275
- Mehrmann, V. & Morandin, R. Structure-preserving discretization for port-Hamiltonian descriptor systems. 2019 IEEE 58th Conference on Decision and Control (CDC) 6863–6868 (2019) doi:10.1109/cdc40024.2019.9030180 – 10.1109/cdc40024.2019.9030180
- Mehrmann, V. & Unger, B. Control of port-Hamiltonian differential-algebraic systems and applications. Acta Numerica 32, 395–515 (2023) – 10.1017/s0962492922000083
- Miminis, G. Deflation in eigenvalue assignment of descriptor systems using state feedback. IEEE Trans. Automat. Contr. 38, 1322–1336 (1993) – 10.1109/9.237645
- Reis, T. & Voigt, M. Linear-Quadratic Optimal Control of Differential-Algebraic Systems: The Infinite Time Horizon Problem with Zero Terminal State. SIAM J. Control Optim. 57, 1567–1596 (2019) – 10.1137/18m1189609
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. FnT in Systems and Control 1, 173–378 (2014) – 10.1561/2600000002