About the Definition of Port Variables for Contact Hamiltonian Systems
Authors
Bernhard Maschke, Arjan van der Schaft
Abstract
Extending the formulation of reversible thermodynamical transformations to the formulation of irreversible transformations of open thermodynamical systems different classes of nonlinear control systems has been defined in terms of control Hamiltonian systems defined on a contact manifold. In this paper we discuss the relation between the definition of variational control contact systems and the input-output contact systems. We have first given an expression of the variational control contact systems in terms of a nonlinear control systems. Secondly we have shown that the conservative input-output contact systems are a subclass of the contact variational systems with integrable output dynamics.
Keywords
Open irreversible thermodynamic systems; Nonlinear control systems; Hamiltonian systems on contact manifolds
Citation
- ISBN: 9783319684444
- Publisher: Springer International Publishing
- DOI: 10.1007/978-3-319-68445-1_49
- Note: International Conference on Geometric Science of Information
BibTeX
@inbook{Maschke_2017,
title={{About the Definition of Port Variables for Contact Hamiltonian Systems}},
ISBN={9783319684451},
ISSN={1611-3349},
DOI={10.1007/978-3-319-68445-1_49},
booktitle={{Geometric Science of Information}},
publisher={Springer International Publishing},
author={Maschke, Bernhard and van der Schaft, Arjan},
year={2017},
pages={418--424}
}
References
- Arnold, V. I. Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics (Springer New York, 1989). doi:10.1007/978-1-4757-2063-1 – 10.1007/978-1-4757-2063-1
- Bravetti, A., Lopez-Monsalvo, C. S. & Nettel, F. Contact symmetries and Hamiltonian thermodynamics. Annals of Physics 361, 377–400 (2015) – 10.1016/j.aop.2015.07.010
- Eberard, D., Maschke, B. M. & van der Schaft, A. J. An extension of Hamiltonian systems to the thermodynamic phase space: Towards a geometry of nonreversible processes. Reports on Mathematical Physics 60, 175–198 (2007) – 10.1016/s0034-4877(07)00024-9
- Favache, A., Dochain, D. & Maschke, B. An entropy-based formulation of irreversible processes based on contact structures. Chemical Engineering Science 65, 5204–5216 (2010) – 10.1016/j.ces.2010.06.019
- Favache, A., Dos Santos Martins, V. S., Dochain, D. & Maschke, B. Some Properties of Conservative Port Contact Systems. IEEE Trans. Automat. Contr. 54, 2341–2351 (2009) – 10.1109/tac.2009.2028973
- Grmela, M. Reciprocity relations in thermodynamics. Physica A: Statistical Mechanics and its Applications 309, 304–328 (2002) – 10.1016/s0378-4371(02)00564-2
- Libermann, P. & Marle, C.-M. Symplectic Geometry and Analytical Mechanics. (Springer Netherlands, 1987). doi:10.1007/978-94-009-3807-6 – 10.1007/978-94-009-3807-6
- Maschke, B. M. & van der Schaft, A. J. PORT-CONTROLLED HAMILTONIAN SYSTEMS: MODELLING ORIGINS AND SYSTEMTHEORETIC PROPERTIES. Nonlinear Control Systems Design 1992 359–365 (1993) doi:10.1016/b978-0-08-041901-5.50064-6 – 10.1016/b978-0-08-041901-5.50064-6
- Merker, J. & Krüger, M. On a variational principle in thermodynamics. Continuum Mech. Thermodyn. 25, 779–793 (2012) – 10.1007/s00161-012-0277-2
- Mrugaa̵, R. On a special family of thermodynamic processes and their invariants. Reports on Mathematical Physics 46, 461–468 (2000) – 10.1016/s0034-4877(00)90012-0
- Nijmeijer, H. & van der Schaft, A. Nonlinear Dynamical Control Systems. (Springer New York, 1990). doi:10.1007/978-1-4757-2101-0 – 10.1007/978-1-4757-2101-0
- Ramirez, H., Maschke, B. & Sbarbaro, D. Feedback equivalence of input–output contact systems. Systems & Control Letters 62, 475–481 (2013) – 10.1016/j.sysconle.2013.02.008
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science 89, 223–234 (2013) – 10.1016/j.ces.2012.12.002
- Ramirez, H., Maschke, B. & Sbarbaro, D. Partial Stabilization of Input-Output Contact Systems on a Legendre Submanifold. IEEE Trans. Automat. Contr. 62, 1431–1437 (2017) – 10.1109/tac.2016.2572403
- van der Schaft, A. J. System theory and mechanics. Lecture Notes in Control and Information Sciences 426–452 (1989) doi:10.1007/bfb0008472 – 10.1007/bfb0008472
- van der Schaft, A. & Crouch, P. E. Hamiltonian and self-adjoint control systems. Systems & Control Letters 8, 289–295 (1987) – 10.1016/0167-6911(87)90093-4