Port Hamiltonian systems with moving interface: a phase field approach
Authors
Benjamin Vincent, Françoise Couenne, Laurent Lefèvre, Bernhard Maschke
Abstract
In this paper, we give a formulation of distributed parameter systems with a moving diffuse interface using the Port Hamiltonian formalism. For this purpose, we suggest to use the phase field modeling approach. In the first part we recall the phase field models, in particular the Cahn–Hilliard and Allen–Cahn equations, and show that they may be expressed in terms of a dissipative Hamiltonian system. In the second part we show how this Hamiltonian model may be extended to a Boundary Port Hamiltonian System and illustrate the construction on the example of crystallization.
Keywords
Boundary control systems; Port Hamiltonian systems; Phase fields; Solidification
Citation
- Journal: IFAC-PapersOnLine
- Year: 2020
- Volume: 53
- Issue: 2
- Pages: 7569–7574
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2020.12.1353
- Note: 21st IFAC World Congress- Berlin, Germany, 11–17 July 2020
BibTeX
@article{Vincent_2020,
title={{Port Hamiltonian systems with moving interface: a phase field approach}},
volume={53},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2020.12.1353},
number={2},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Vincent, Benjamin and Couenne, Françoise and Lefèvre, Laurent and Maschke, Bernhard},
year={2020},
pages={7569--7574}
}
References
- Allen, S. M. & Cahn, J. W. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metallurgica vol. 27 1085–1095 (1979) – 10.1016/0001-6160(79)90196-2
- Boutin, Dafer-mos regularization for interface coupling of conservation laws. (2008)
- Cahn, Free energy of a nonuniform system. I. Interfacial free energy. The Journal of chemical physics (1958)
- Chehab, J.-P. et al. Boundary control of the number of interfaces for the one-dimensional Allen-Cahn equation. Discrete & Continuous Dynamical Systems - S vol. 10 87–100 (2017) – 10.3934/dcdss.2017005
- CHEN, Z. Optimal boundary controls for a phase field model. IMA Journal of Mathematical Control and Information vol. 10 157–176 (1993) – 10.1093/imamci/10.2.157
- Diagne, M. & Maschke, B. Port Hamiltonian formulation of a system of two conservation laws with a moving interface. European Journal of Control vol. 19 495–504 (2013) – 10.1016/j.ejcon.2013.09.001
- Duindam, (2009)
- Elder, K. R., Grant, M., Provatas, N. & Kosterlitz, J. M. Sharp interface limits of phase-field models. Physical Review E vol. 64 (2001) – 10.1103/physreve.64.021604
- Emmerich, (2003)
- Godlewski, E. & Raviart, P.-A. The numerical interface coupling of nonlinear hyperbolic systems of conservation laws: I. The scalar case. Numerische Mathematik vol. 97 81–130 (2004) – 10.1007/s00211-002-0438-5
- Kobayashi, R., Wang, W., Tsukamoto, K. & Wu, D. A brief introduction to phase field method. AIP Conference Proceedings (2010) doi:10.1063/1.3476232 – 10.1063/1.3476232
- Kotyczka, P., Maschke, B. & Lefèvre, L. Weak form of Stokes–Dirac structures and geometric discretization of port-Hamiltonian systems. Journal of Computational Physics vol. 361 442–476 (2018) – 10.1016/j.jcp.2018.02.006
- Kurula, M., Zwart, H., van der Schaft, A. & Behrndt, J. Dirac structures and their composition on Hilbert spaces. Journal of Mathematical Analysis and Applications vol. 372 402–422 (2010) – 10.1016/j.jmaa.2010.07.004
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Maschke, Compositional Modelling of Distributed-Parameter Systems. (2005)
- Maschke, On alternative Poisson brackets for fluid dynamical systems and their extension to Stokes–Dirac structures. IFAC Proceedings (2013)
- Nauman, E. B. & He, D. Q. Nonlinear diffusion and phase separation. Chemical Engineering Science vol. 56 1999–2018 (2001) – 10.1016/s0009-2509(01)00005-7
- Schöberl, M. & Siuka, A. Jet bundle formulation of infinite-dimensional port-Hamiltonian systems using differential operators. Automatica vol. 50 607–613 (2014) – 10.1016/j.automatica.2013.11.035
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Wang, S.-L. et al. Thermodynamically-consistent phase-field models for solidification. Physica D: Nonlinear Phenomena vol. 69 189–200 (1993) – 10.1016/0167-2789(93)90189-8