On Tracking Control of Rigid-Joint Robots With Only Position Measurements
Authors
Daniel A. Dirksz, Jacquelien M. A. Scherpen
Abstract
In this letter, we present tracking control with only position measurements for rigid-joint robots, by applying the canonical transformation theory for port-Hamiltonian systems. We show that besides giving the same results as presented in the literature for Euler-Lagrange systems, the canonical transformation theory also justifies a Coriolis matrix based on the desired velocities. Furthermore, we show how the initial conditions of the controller can be tuned in order to improve transient performance. Finally, we validate our results on a simple experimental setup.
Citation
- Journal: IEEE Transactions on Control Systems Technology
- Year: 2013
- Volume: 21
- Issue: 4
- Pages: 1510–1513
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/tcst.2012.2204886
BibTeX
@article{Dirksz_2013,
title={{On Tracking Control of Rigid-Joint Robots With Only Position Measurements}},
volume={21},
ISSN={1558-0865},
DOI={10.1109/tcst.2012.2204886},
number={4},
journal={IEEE Transactions on Control Systems Technology},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Dirksz, Daniel A. and Scherpen, Jacquelien M. A.},
year={2013},
pages={1510--1513}
}
References
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica vol. 39 2059–2069 (2003) – 10.1016/j.automatica.2003.07.005
- Ortega, R., Loría, A., Nicklasson, P. J. & Sira-Ramírez, H. Passivity-Based Control of Euler-Lagrange Systems. Communications and Control Engineering (Springer London, 1998). doi:10.1007/978-1-4471-3603-3 – 10.1007/978-1-4471-3603-3
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Koditschek, D. Natural motion for robot arms. The 23rd IEEE Conference on Decision and Control (1984) doi:10.1109/cdc.1984.272106 – 10.1109/cdc.1984.272106
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Ortega, R., Spong, M. W., Gomez-Estern, F. & Blankenstein, G. Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Transactions on Automatic Control vol. 47 1218–1233 (2002) – 10.1109/tac.2002.800770
- krstic, Nonlinear and Adaptive Control Design (1995)
- Battilotti, S. & Lanari, L. Global set point control via link position measurement for flexible joint robots. Systems & Control Letters vol. 25 21–29 (1995) – 10.1016/0167-6911(94)00052-w
- loria, On tracking control of rigid and flexible joints robots. Appl Math Comput Sci Special Issue Math Methods Robot (1995)
- besanon, State transformation and global output feedback disturbance attenuation for a class of mechanical systems. Proc Medit Conf Control Syst (1998)
- Berghuis, H. & Nijmeijer, H. Global regulation of robots using only position measurements. Systems & Control Letters vol. 21 289–293 (1993) – 10.1016/0167-6911(93)90071-d
- Nicosia, S. & Tomei, P. A tracking controller for flexible joint robots using only link position feedback. IEEE Transactions on Automatic Control vol. 40 885–890 (1995) – 10.1109/9.384223
- Loria, A. & Melhem, K. Position feedback global tracking control of EL systems: a state transformation approach. IEEE Transactions on Automatic Control vol. 47 841–847 (2002) – 10.1109/tac.2002.1000284
- Ailon, A. & Ortega, R. An observer-based set-point controller for robot manipulators with flexible joints. Systems & Control Letters vol. 21 329–335 (1993) – 10.1016/0167-6911(93)90076-i
- Kelly, R., Ortega, R., Ailon, A. & Loria, A. Global regulation of flexible joint robots using approximate differentiation. IEEE Transactions on Automatic Control vol. 39 1222–1224 (1994) – 10.1109/9.293181
- Fujimoto, K. & Sugie, T. Canonical transformation and stabilization of generalized Hamiltonian systems. Systems & Control Letters vol. 42 217–227 (2001) – 10.1016/s0167-6911(00)00091-8