On the use of Dirac structures on Hilbert spaces in the synthesis of boundary control laws for port-Hamiltonian systems
Authors
Abstract
Aim of this paper is to show how the Dirac structure properties can be exploited in the development of energy-based boundary control laws for distributed port-Hamiltonian systems. Usually, stabilisation of non-zero equilibria has been achieved by looking at, or generating, a set of structural invariants, namely Casimir functions, in closed-loop. Since this approach fails when an infinite amount of energy is required at the equilibrium (dissipation obstacle), this paper illustrates that the class of stabilising controllers is enlarged if the synthesis relies on the parametrisation of the dynamics provided by the image representation of the Dirac structure, able to show the effects of the boundary inputs on state evolution. The theoretical results are discussed with the help of a simple but illustrative example, i.e. a transmission line with RLC load in both serial and parallel configurations.
Citation
- Journal: 52nd IEEE Conference on Decision and Control
- Year: 2013
- Volume:
- Issue:
- Pages: 3267–3272
- Publisher: IEEE
- DOI: 10.1109/cdc.2013.6760382
BibTeX
@inproceedings{Macchelli_2013,
title={{On the use of Dirac structures on Hilbert spaces in the synthesis of boundary control laws for port-Hamiltonian systems}},
DOI={10.1109/cdc.2013.6760382},
booktitle={{52nd IEEE Conference on Decision and Control}},
publisher={IEEE},
author={Macchelli, Alessandro},
year={2013},
pages={3267--3272}
}
References
- Iftime, O. V., Sandovici, A. & Golo, G. Tools for analysis of Dirac Structures on Banach Spaces. Proceedings of the 44th IEEE Conference on Decision and Control 3856–3861 doi:10.1109/cdc.2005.1582763 – 10.1109/cdc.2005.1582763
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Trans. Automat. Contr. 54, 142–147 (2009) – 10.1109/tac.2008.2007176
- Ortega, R. & Mareels, I. Energy-balancing passivity-based control. Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334) 1265–1270 vol.2 (2000) doi:10.1109/acc.2000.876703 – 10.1109/acc.2000.876703
- Macchelli, A. Energy shaping of distributed parameter port-Hamiltonian systems based on finite element approximation. Systems & Control Letters 60, 579–589 (2011) – 10.1016/j.sysconle.2011.04.016
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM J. Control Optim. 44, 1864–1892 (2005) – 10.1137/040611677
- Iftime, O. V. & Sandovici, A. Interconnection of Dirac structures via kernel/image representation. Proceedings of the 2011 American Control Conference 3571–3576 (2011) doi:10.1109/acc.2011.5991091 – 10.1109/acc.2011.5991091
- Macchelli, A. Passivity-based control of implicit port-Hamiltonian systems. 2013 European Control Conference (ECC) 2098–2103 (2013) doi:10.23919/ecc.2013.6669288 – 10.23919/ecc.2013.6669288
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM J. Control Optim. 37, 54–91 (1998) – 10.1137/s0363012996312039
- golo, Interconnection Structures in Port-Based Modeling Tools for Analysis and Simulation (2002)
- Luo, Z.-H., Guo, B.-Z. & Morgul, O. Stability and Stabilization of Infinite Dimensional Systems with Applications. Communications and Control Engineering (Springer London, 1999). doi:10.1007/978-1-4471-0419-3 – 10.1007/978-1-4471-0419-3
- Rodriguez, H., van der Schaft, A. J. & Ortega, R. On stabilization of nonlinear distributed parameter port-controlled Hamiltonian systems via energy shaping. Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228) vol. 1 131–136 – 10.1109/.2001.980086
- swaters, Introduction to Hamiltonian Fluid Dynamics and Stability Theory (2000)
- macchelli, Modeling and Control of Complex Physical Systems The Port-Hamiltonian Approach (2009)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Curtain, R. F. & Zwart, H. An Introduction to Infinite-Dimensional Linear Systems Theory. Texts in Applied Mathematics (Springer New York, 1995). doi:10.1007/978-1-4612-4224-6 – 10.1007/978-1-4612-4224-6
- macchelli, Boundary energy shaping of linear distributed port-hamiltonian systems. Lagrangian and Hamiltonian Methods for Nonlinear Control (LHMNLC 2012) Proceedings of the 4th IFAC Workshop on (2012)
- Macchelli, A. Asymptotic stability of forced equilibria for distributed port-Hamiltonian systems. 2012 IEEE 51st IEEE Conference on Decision and Control (CDC) 2934–2939 (2012) doi:10.1109/cdc.2012.6426693 – 10.1109/cdc.2012.6426693
- Macchelli, A. & Melchiorri, C. Control by interconnection of mixed port Hamiltonian systems. IEEE Trans. Automat. Contr. 50, 1839–1844 (2005) – 10.1109/tac.2005.858656
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM J. Control Optim. 43, 743–767 (2004) – 10.1137/s0363012903429530
- Putting energy back in control. IEEE Control Syst. 21, 18–33 (2001) – 10.1109/37.915398
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7