Asymptotic stability of forced equilibria for distributed port-Hamiltonian systems
Authors
Abstract
The main contribution of this paper is an energy shaping procedure for the stabilization of forced equilibria for linear, lossless, distributed port-Hamiltonian systems via Casimir generation. Once inputs and outputs have been properly chosen to have a well-posed boundary control system, conditions for the existence of Casimir functions in closed-loop are given, together with their relation with the controller structure. These invariants suggest how to select the controller Hamiltonian to introduce a minimum at the desired equilibrium. Such equilibrium can be made asymptotically stable via damping injection, if proper “pervasive” damping injection conditions are satisfied. The methodology is illustrated with the help of a Timoshenko beam with constant non-zero force applied at one side of the spatial domain, and full-actuation on the other one.
Citation
- Journal: 2012 IEEE 51st IEEE Conference on Decision and Control (CDC)
- Year: 2012
- Volume:
- Issue:
- Pages: 2934–2939
- Publisher: IEEE
- DOI: 10.1109/cdc.2012.6426693
BibTeX
@inproceedings{Macchelli_2012,
title={{Asymptotic stability of forced equilibria for distributed port-Hamiltonian systems}},
DOI={10.1109/cdc.2012.6426693},
booktitle={{2012 IEEE 51st IEEE Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Macchelli, Alessandro},
year={2012},
pages={2934--2939}
}
References
- Zhang, C.-G. Boundary feedback stabilization of the undamped Timoshenko beam with both ends free. Journal of Mathematical Analysis and Applications 326, 488–499 (2007) – 10.1016/j.jmaa.2006.01.020
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Trans. Automat. Contr. 54, 142–147 (2009) – 10.1109/tac.2008.2007176
- Curtain, R. F. & Zwart, H. An Introduction to Infinite-Dimensional Linear Systems Theory. Texts in Applied Mathematics (Springer New York, 1995). doi:10.1007/978-1-4612-4224-6 – 10.1007/978-1-4612-4224-6
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM J. Control Optim. 44, 1864–1892 (2005) – 10.1137/040611677
- Villegas, J. A., Zwart, H., Le Gorrec, Y., Maschke, B. & van der Schaft, A. J. Stability and Stabilization of a Class of Boundary Control Systems. Proceedings of the 44th IEEE Conference on Decision and Control 3850–3855 doi:10.1109/cdc.2005.1582762 – 10.1109/cdc.2005.1582762
- Luo, Z.-H., Guo, B.-Z. & Morgul, O. Stability and Stabilization of Infinite Dimensional Systems with Applications. Communications and Control Engineering (Springer London, 1999). doi:10.1007/978-1-4471-0419-3 – 10.1007/978-1-4471-0419-3
- Macchelli, A. Energy shaping of distributed parameter port-Hamiltonian systems based on finite element approximation. Systems & Control Letters 60, 579–589 (2011) – 10.1016/j.sysconle.2011.04.016
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM J. Control Optim. 43, 743–767 (2004) – 10.1137/s0363012903429530
- Pasumarthy, R. & van der Schaft, A. J. Achievable Casimirs and its implications on control of port-Hamiltonian systems. International Journal of Control 80, 1421–1438 (2007) – 10.1080/00207170701361273
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- swaters, Introduction to Hamiltonian Fluid Dynamics and Stability Theory (2000)
- Putting energy back in control. IEEE Control Syst. 21, 18–33 (2001) – 10.1109/37.915398
- Maschke, B., Ortega, R. & Van Der Schaft, A. J. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Trans. Automat. Contr. 45, 1498–1502 (2000) – 10.1109/9.871758
- Rodriguez, H., van der Schaft, A. J. & Ortega, R. On stabilization of nonlinear distributed parameter port-controlled Hamiltonian systems via energy shaping. Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228) vol. 1 131–136 – 10.1109/.2001.980086
- Macchelli, A. & Melchiorri, C. Control by interconnection of mixed port Hamiltonian systems. IEEE Trans. Automat. Contr. 50, 1839–1844 (2005) – 10.1109/tac.2005.858656
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Energy-shaping of port-controlled Hamiltonian systems by interconnection. Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304) vol. 2 1646–1651 – 10.1109/cdc.1999.830260