Observer-Based Adaptive Exponential Tracking of Port - Hamiltonian Systems via Contraction Method
Authors
Huimin Zhi, Yanhong Liu, Benyan Huo, Hongnian Yu
Abstract
This article proposes an observer-based adaptive exponential tracking control scheme for port-Hamiltonian systems (PHS) involving parameter uncertainty based on contraction method (CM). First, an exponential adaptive observer with Hamiltonian structure for uncertain generalized PHS is given based on the idea of augment plus feedback. Compared with the conventional observer design method, the proposed observer can maintain the structure of original system and simultaneously guarantees the completeness of the state’s physical significance. Then, based on designed observer, we proposed an adaptive tracking control strategy by using the structure properties of the PHS and CM. Moreover, an analysis is provided of the relevant decay rate and how parameters affect tracking speed of system. Ultimately, simulation results demonstrated the effectiveness of proposed method.
Citation
- Journal: 2024 China Automation Congress (CAC)
- Year: 2024
- Volume:
- Issue:
- Pages: 6528–6533
- Publisher: IEEE
- DOI: 10.1109/cac63892.2024.10864811
BibTeX
@inproceedings{Zhi_2024,
title={{Observer-Based Adaptive Exponential Tracking of Port - Hamiltonian Systems via Contraction Method}},
DOI={10.1109/cac63892.2024.10864811},
booktitle={{2024 China Automation Congress (CAC)}},
publisher={IEEE},
author={Zhi, Huimin and Liu, Yanhong and Huo, Benyan and Yu, Hongnian},
year={2024},
pages={6528--6533}
}
References
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. FnT in Systems and Control 1, 173–378 (2014) – 10.1561/2600000002
- Farid, Y. & Ruggiero, F. Finite-time extended state observer and fractional-order sliding mode controller for impulsive hybrid port-Hamiltonian systems with input delay and actuators saturation: Application to ball-juggler robots. Mechanism and Machine Theory 167, 104577 (2022) – 10.1016/j.mechmachtheory.2021.104577
- Ma, Y., He, L., Song, T. & Wang, D. Adaptive Path-Tracking Control With Passivity-Based Observer by Port-Hamiltonian Model for Autonomous Vehicles. IEEE Trans. Intell. Veh. 8, 4120–4130 (2023) – 10.1109/tiv.2023.3290556
- Zucco, J. P. T., Ramirez, H., Wu, Y. & Le Gorrec, Y. Linear Matrix Inequality Design of Exponentially Stabilizing Observer-Based State Feedback Port-Hamiltonian Controllers. IEEE Trans. Automat. Contr. 68, 6184–6191 (2023) – 10.1109/tac.2022.3227927
- WANG, Y. Observer and observer-based H∞ control of generalized Hamiltonian systems. Sci China Ser F 48, 211 (2005) – 10.1360/03yf0601
- Sun, W., Lv, X., Wang, K. & Wang, L. Observer-based output feedback stabilisation and ℒ2-disturbance attenuation of uncertain Hamiltonian systems with input and output delays. International Journal of Systems Science 50, 2565–2578 (2019) – 10.1080/00207721.2019.1671532
- Cui, J., Yang, R., Pang, C. & Zhang, Q. Observer-based adaptive robust stabilization of dynamic positioning ship with delay via Hamiltonian method. Ocean Engineering 222, 108439 (2021) – 10.1016/j.oceaneng.2020.108439
- Jayawardhana, B. & Weiss, G. Tracking and disturbance rejection for fully actuated mechanical systems. Automatica 44, 2863–2868 (2008) – 10.1016/j.automatica.2008.03.030
- Landau, I. D., Lozano, R., M’Saad, M. & Karimi, A. Adaptive Control. Communications and Control Engineering (Springer London, 2011). doi:10.1007/978-0-85729-664-1 – 10.1007/978-0-85729-664-1
- Yuzhen Wang & Shuzhi Sam Ge. Augmented Hamiltonian Formulation and Energy-Based Control Design of Uncertain Mechanical Systems. IEEE Trans. Contr. Syst. Technol. 16, 202–213 (2008) – 10.1109/tcst.2007.903367
- Liu, L., Yue, X., Wen, H. & Dai, H. RISE-based adaptive tracking control for Euler–Lagrange mechanical systems with matched disturbances. ISA Transactions 135, 94–104 (2023) – 10.1016/j.isatra.2022.09.045
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica 39, 2059–2069 (2003) – 10.1016/j.automatica.2003.07.005
- Dirksz, D. A. & Scherpen, J. M. A. Structure Preserving Adaptive Control of Port-Hamiltonian Systems. IEEE Trans. Automat. Contr. 57, 2880–2885 (2012) – 10.1109/tac.2012.2192359
- Qureshi, A., El Ferik, S. & Lewis, F. L. ℒ2 neuro‐adaptive tracking control of uncertain port‐controlled Hamiltonian systems. IET Control Theory & Appl 9, 1781–1790 (2015) – 10.1049/iet-cta.2014.1144
- LOHMILLER, W. & SLOTINE, J.-J. E. On Contraction Analysis for Non-linear Systems. Automatica 34, 683–696 (1998) – 10.1016/s0005-1098(98)00019-3
- Reyes-Báez, R., van der Schaft, A. & Jayawardhana, B. Virtual contractivity-based control of fully-actuated mechanical systems in the port-Hamiltonian framework. Automatica 141, 110275 (2022) – 10.1016/j.automatica.2022.110275
- Zhi, H., Wei, J., Liu, Y., Ding, S. & Owens, D. H. Constructive exponential tracking control for mechanical systems via Hamiltonian realization and contraction analysis method. ISA Transactions 142, 573–584 (2023) – 10.1016/j.isatra.2023.07.011
- Yaghmaei, A. & Yazdanpanah, M. J. Structure Preserving Observer Design for Port-Hamiltonian Systems. IEEE Trans. Automat. Contr. 64, 1214–1220 (2019) – 10.1109/tac.2018.2847904
- Thenozhi, S., Sanchez, A. C. & Rodriguez-Resendiz, J. A Contraction Theory-Based Tracking Control Design With Friction Identification and Compensation. IEEE Trans. Ind. Electron. 69, 6111–6120 (2022) – 10.1109/tie.2021.3094456