Finite-time extended state observer and fractional-order sliding mode controller for impulsive hybrid port-Hamiltonian systems with input delay and actuators saturation: Application to ball-juggler robots
Authors
Abstract
This paper addresses the robust control problem of mechanical systems with hybrid dynamics in port-Hamiltonian form. It is assumed that only the position states are measurable, and time-delay and saturation constraint affect the control signal. An extended state observer is designed after a coordinate transformation. The effect of the time delay in the control signal is neutralized by applying Padé approximant and augmenting the system states. An assistant system with faster convergence is developed to handle actuators saturation. Fractional-order sliding mode controller acts as a centralized controller and compensates for the undesired effects of unknown external disturbance and parameter uncertainties using the observer estimation results. Stability analysis shows that the closed-loop system states, such as the observer tracking error, and the position/velocity tracking errors, are finite-time stable. Simulation studies on a two ball-playing juggler robot with three degrees of freedom validate the theoretical results’ effectiveness.
Keywords
Impulsive hybrid systems; Port-Hamiltonian dynamics; Extended state observer; Fractional sliding surface; Finite-time control; Input delay
Citation
- Journal: Mechanism and Machine Theory
- Year: 2022
- Volume: 167
- Issue:
- Pages: 104577
- Publisher: Elsevier BV
- DOI: 10.1016/j.mechmachtheory.2021.104577
BibTeX
@article{Farid_2022,
title={{Finite-time extended state observer and fractional-order sliding mode controller for impulsive hybrid port-Hamiltonian systems with input delay and actuators saturation: Application to ball-juggler robots}},
volume={167},
ISSN={0094-114X},
DOI={10.1016/j.mechmachtheory.2021.104577},
journal={Mechanism and Machine Theory},
publisher={Elsevier BV},
author={Farid, Yousef and Ruggiero, Fabio},
year={2022},
pages={104577}
}
References
- van der Schaft, (2000)
- Francoa, Energy shaping control with integral action for soft continuum manipulators. Mech. Mach. Theory (2021)
- Fu, B., Li, S., Wang, X. & Guo, L. Output feedback based simultaneous stabilization of two Port-controlled Hamiltonian systems with disturbances. Journal of the Franklin Institute vol. 356 8154–8166 (2019) – 10.1016/j.jfranklin.2019.02.039
- Jia, Z., Qiao, L. & Zhang, W. Adaptive tracking control of unmanned underwater vehicles with compensation for external perturbations and uncertainties using Port-Hamiltonian theory. Ocean Engineering vol. 209 107402 (2020) – 10.1016/j.oceaneng.2020.107402
- Djemai, (2015)
- Wang, Z.-M., Wei, A., Zhao, X., Yang, J. & Zong, G. Stabilisation and ℋ∞control for switched port-controlled Hamiltonian systems with unstable modes and actuator saturation. International Journal of Systems Science vol. 51 1–19 (2019) – 10.1080/00207721.2019.1690071
- Yang, X., Peng, D., Lv, X. & Li, X. Recent progress in impulsive control systems. Mathematics and Computers in Simulation vol. 155 244–268 (2019) – 10.1016/j.matcom.2018.05.003
- Nodozi, I. & Rahmani, M. LMI-based model predictive control for switched nonlinear systems. Journal of Process Control vol. 59 49–58 (2017) – 10.1016/j.jprocont.2017.09.001
- Yang, S., Guo, C., Liu, B., Lin, X. & Zhao, C. Decentralized and autonomous voltage balancing control approach for hybrid multi-terminal Ultra-HVDC system. International Journal of Electrical Power & Energy Systems vol. 115 105472 (2020) – 10.1016/j.ijepes.2019.105472
- Zhong, G.-X. & Yang, G.-H. Passivity and output feedback passification of switched continuous-time systems with a dwell time constraint. Journal of Process Control vol. 32 16–24 (2015) – 10.1016/j.jprocont.2015.04.013
- Chen, W., Wen, C. & Wu, J. Global Exponential/Finite-Time Stability of Nonlinear Adaptive Switching Systems With Applications in Controlling Systems With Unknown Control Direction. IEEE Transactions on Automatic Control vol. 63 2738–2744 (2018) – 10.1109/tac.2018.2791346
- Wu, F. & Lian, J. Stabilization of constrained switched systems via multiple Lyapunov R-functions. Systems & Control Letters vol. 139 104686 (2020) – 10.1016/j.sysconle.2020.104686
- Müller, M. A., Martius, P. & Allgöwer, F. Model predictive control of switched nonlinear systems under average dwell-time. Journal of Process Control vol. 22 1702–1710 (2012) – 10.1016/j.jprocont.2012.07.004
- Wang, Z.-M., Wei, A. & Zhang, X. Stability analysis and control design based on average dwell time approaches for switched nonlinear port-controlled Hamiltonian systems. Journal of the Franklin Institute vol. 356 3368–3397 (2019) – 10.1016/j.jfranklin.2019.02.024
- Mattioni, Modelling and control of an IPMC actuated flexible structure: A lumped port Hamiltonian approach. Control Eng. Pract. (2020)
- Franco, E., Brown, T., Astolfi, A. & Rodriguez y Baena, F. Adaptive energy shaping control of robotic needle insertion. Mechanism and Machine Theory vol. 155 104060 (2021) – 10.1016/j.mechmachtheory.2020.104060
- Rashad, R., Califano, F. & Stramigioli, S. Port-Hamiltonian Passivity-Based Control on SE(3) of a Fully Actuated UAV for Aerial Physical Interaction Near-Hovering. IEEE Robotics and Automation Letters vol. 4 4378–4385 (2019) – 10.1109/lra.2019.2932864
- van der Schaft, (2014)
- Dai, S. & Koutsoukos, X. Safety analysis of integrated adaptive cruise and lane keeping control using multi-modal port-Hamiltonian systems. Nonlinear Analysis: Hybrid Systems vol. 35 100816 (2020) – 10.1016/j.nahs.2019.100816
- Gritli, H., Khraief, N., Chemori, A. & Belghith, S. Self-generated limit cycle tracking of the underactuated inertia wheel inverted pendulum under IDA-PBC. Nonlinear Dynamics vol. 89 2195–2226 (2017) – 10.1007/s11071-017-3578-y
- Venkatraman, A. & van der Schaft, A. J. Full-order observer design for a class of port-Hamiltonian systems. Automatica vol. 46 555–561 (2010) – 10.1016/j.automatica.2010.01.019
- Fu, B., Wang, Q. & He, W. Nonlinear Disturbance Observer-Based Control for a Class of Port-Controlled Hamiltonian Disturbed Systems. IEEE Access vol. 6 50299–50305 (2018) – 10.1109/access.2018.2868919
- Wang, Z.-M., Wei, A., Zhao, X., Yang, J. & Zong, G. Stabilisation and ℋ∞control for switched port-controlled Hamiltonian systems with unstable modes and actuator saturation. International Journal of Systems Science vol. 51 1–19 (2019) – 10.1080/00207721.2019.1690071
- Ruggiero, F., Lippiello, V. & Siciliano, B. Nonprehensile Dynamic Manipulation: A Survey. IEEE Robotics and Automation Letters vol. 3 1711–1718 (2018) – 10.1109/lra.2018.2801939
- Serra, D., Ruggiero, F., Lippiello, V. & Siciliano, B. A Nonlinear Least Squares Approach for Nonprehensile Dual-Hand Robotic Ball Juggling. IFAC-PapersOnLine vol. 50 11485–11490 (2017) – 10.1016/j.ifacol.2017.08.1595
- Koç, O., Maeda, G. & Peters, J. Online optimal trajectory generation for robot table tennis. Robotics and Autonomous Systems vol. 105 121–137 (2018) – 10.1016/j.robot.2018.03.012
- Zhang, K., Cao, Z., Liu, J., Fang, Z. & Tan, M. Real-Time Visual Measurement With Opponent Hitting Behavior for Table Tennis Robot. IEEE Transactions on Instrumentation and Measurement vol. 67 811–820 (2018) – 10.1109/tim.2017.2789139
- Su, H., Fang, Z., Xu, D. & Tan, M. Trajectory Prediction of Spinning Ball Based on Fuzzy Filtering and Local Modeling for Robotic Ping–Pong Player. IEEE Transactions on Instrumentation and Measurement vol. 62 2890–2900 (2013) – 10.1109/tim.2013.2263672
- Yongsheng Zhao, Yifeng Zhang, Rong Xiong & Jianguo Wang. Optimal State Estimation of Spinning Ping-Pong Ball Using Continuous Motion Model. IEEE Transactions on Instrumentation and Measurement vol. 64 2208–2216 (2015) – 10.1109/tim.2014.2386951
- Gritli, H. & Belghith, S. LMI-based synthesis of a robust saturated controller for an underactuated mechanical system subject to motion constraints. European Journal of Control vol. 57 179–193 (2021) – 10.1016/j.ejcon.2020.04.004
- Wei, Y. & Liu, G.-P. Composite control for switched impulsive time-delay systems subject to actuator saturation and multiple disturbances. Nonlinear Analysis: Hybrid Systems vol. 35 100825 (2020) – 10.1016/j.nahs.2019.100825
- Ye, H., Li, M., Yang, C. & Gui, W. Finite-time stabilization of the double integrator subject to input saturation and input delay. IEEE/CAA Journal of Automatica Sinica vol. 5 1017–1024 (2018) – 10.1109/jas.2018.7511177
- Lin, Finite-time stabilization of input-delay switched systems. Appl. Math. Comput. (2020)
- Tuan, L. A. Fractional-order fast terminal back-stepping sliding mode control of crawler cranes. Mechanism and Machine Theory vol. 137 297–314 (2019) – 10.1016/j.mechmachtheory.2019.03.027
- Bigdeli, N. The design of a non-minimal state space fractional-order predictive functional controller for fractional systems of arbitrary order. Journal of Process Control vol. 29 45–56 (2015) – 10.1016/j.jprocont.2015.03.004
- Song, S. et al. Fractional-order adaptive neuro-fuzzy sliding mode H∞ control for fuzzy singularly perturbed systems. Journal of the Franklin Institute vol. 356 5027–5048 (2019) – 10.1016/j.jfranklin.2019.03.020
- Alinezhad, M. & Allahviranloo, T. On the solution of fuzzy fractional optimal control problems with the Caputo derivative. Information Sciences vol. 421 218–236 (2017) – 10.1016/j.ins.2017.08.094
- Farid, Y., Majd, V. J. & Ehsani-Seresht, A. Fractional-order active fault-tolerant force-position controller design for the legged robots using saturated actuator with unknown bias and gain degradation. Mechanical Systems and Signal Processing vol. 104 465–486 (2018) – 10.1016/j.ymssp.2017.11.010
- Yang, Transient fault diagnosis for traction control system based on optimal fractional-order method. ISA Trans. (2020)
- Liu, J., Li, P., Qi, L., Chen, W. & Qin, K. Distributed formation control of double-integrator fractional-order multi-agent systems with relative damping and nonuniform time-delays. Journal of the Franklin Institute vol. 356 5122–5150 (2019) – 10.1016/j.jfranklin.2019.04.031
- Znegui, W., Gritli, H. & Belghith, S. Stabilization of the passive walking dynamics of the compass-gait biped robot by developing the analytical expression of the controlled Poincaré map. Nonlinear Dynamics vol. 101 1061–1091 (2020) – 10.1007/s11071-020-05851-9
- Turki, F., Gritli, H. & Belghith, S. An LMI-based design of a robust state-feedback control for the master-slave tracking of an impact mechanical oscillator with double-side rigid constraints and subject to bounded-parametric uncertainty. Communications in Nonlinear Science and Numerical Simulation vol. 82 105020 (2020) – 10.1016/j.cnsns.2019.105020
- Gritli, H. Robust master-slave synchronization of chaos in a one-sided 1-DoF impact mechanical oscillator subject to parametric uncertainties and disturbances. Mechanism and Machine Theory vol. 142 103610 (2019) – 10.1016/j.mechmachtheory.2019.103610
- Lanczos, (1952)
- Farid, Y. & Ruggiero, F. Finite-time disturbance reconstruction and robust fractional-order controller design for hybrid port-Hamiltonian dynamics of biped robots. Robotics and Autonomous Systems vol. 144 103836 (2021) – 10.1016/j.robot.2021.103836
- Yuzhen Wang & Feng, G. Finite-time stabilization of Port-Controlled Hamiltonian systems with application to nonlinear affine systems. 2008 American Control Conference 1202–1207 (2008) doi:10.1109/acc.2008.4586656 – 10.1109/acc.2008.4586656
- Liu, H., Shen, Y. & Zhao, X. Asynchronous finite-time control for switched linear systems via mode-dependent dynamic state-feedback. Nonlinear Analysis: Hybrid Systems vol. 8 109–120 (2013) – 10.1016/j.nahs.2012.12.001
- Kilbas, (2006)
- Lv, X., Niu, Y. & Song, J. Finite-time boundedness of uncertain Hamiltonian systems via sliding mode control approach. Nonlinear Dynamics vol. 104 497–507 (2021) – 10.1007/s11071-021-06292-8
- Siciliano, (2009)
- Lippiello, V., Ruggiero, F. & Siciliano, B. 3D monocular robotic ball catching. Robotics and Autonomous Systems vol. 61 1615–1625 (2013) – 10.1016/j.robot.2013.06.008
- Tofigh, Fractional sliding mode control for an autonomous two-wheeled vehicle equipped with an innovative gyroscopic actuator. Robot. Auton. Syst. (2021)