Constructive exponential tracking control for mechanical systems via Hamiltonian realization and contraction analysis method
Authors
Huimin Zhi, Jumei Wei, Yanhong Liu, Shuai Ding, David H. Owens
Abstract
The conventional tracking control of mechanical systems is generally based on the stabilization of error dynamics and most of the results can only guarantee asymptotic tracking of the desired trajectories. Since error dynamics are generally time-varying, it is very difficult to find appropriate Lyapunov functions or control Lyapunov functions to complete stability analysis and controller design. To address this limitation, the novel constructive exponential tracking control method is proposed to mechanical systems by utilizing the Hamiltonian realization and contraction analysis in this paper. Firstly, based on the Hamiltonian realization and use the structural characteristics of port-Hamiltonian systems, the exponential tracking controllers are constructed for fully actuated and under-actuated mechanical systems by combining the pre-feedback with feedback control. The proposed tracking control strategies can be used to discuss fully actuated and under-actuated mechanical systems in a unified framework. Then the exponential decay-rate of tracking controllers and procedure for selecting control parameters for fully actuated and under-actuated mechanical systems are given. Finally, comparative simulations and experiments are carried out to illustrate the effectiveness and robustness of the proposed control strategy.
Keywords
Trajectory tracking control; Port-Hamiltonian system; Hamiltonian realization; Contraction analysis; Manipulator system; Double inverted pendulum system
Citation
- Journal: ISA Transactions
- Year: 2023
- Volume: 142
- Issue:
- Pages: 573–584
- Publisher: Elsevier BV
- DOI: 10.1016/j.isatra.2023.07.011
BibTeX
@article{Zhi_2023,
title={{Constructive exponential tracking control for mechanical systems via Hamiltonian realization and contraction analysis method}},
volume={142},
ISSN={0019-0578},
DOI={10.1016/j.isatra.2023.07.011},
journal={ISA Transactions},
publisher={Elsevier BV},
author={Zhi, Huimin and Wei, Jumei and Liu, Yanhong and Ding, Shuai and Owens, David H.},
year={2023},
pages={573--584}
}
References
- Rios, H., Falcon, R., Gonzalez, O. A. & Dzul, A. Continuous Sliding-Mode Control Strategies for Quadrotor Robust Tracking: Real-Time Application. IEEE Transactions on Industrial Electronics vol. 66 1264–1272 (2019) – 10.1109/tie.2018.2831191
- Toriumi, F. Y. & Angelico, B. A. Passivity-Based Nonlinear Control Approach for Tracking Task of an Underactuated CMG. IEEE/ASME Transactions on Mechatronics vol. 26 2285–2293 (2021) – 10.1109/tmech.2020.3036765
- Xue, M., Yan, H., Zhang, H., Wang, M. & Zhang, D. Dissipative output feedback tracking control of Markov jump systems under compensation scheme. Automatica vol. 146 110535 (2022) – 10.1016/j.automatica.2022.110535
- Xue, M., Yan, H., Zhang, H., Sun, J. & Lam, H.-K. Hidden-Markov-Model-Based Asynchronous $H_{\infty }$ Tracking Control of Fuzzy Markov Jump Systems. IEEE Transactions on Fuzzy Systems vol. 29 1081–1092 (2021) – 10.1109/tfuzz.2020.2968878
- Besançon, G. Global output feedback tracking control for a class of Lagrangian systems. Automatica vol. 36 1915–1921 (2000) – 10.1016/s0005-1098(00)00111-4
- Jayawardhana, B. & Weiss, G. Tracking and disturbance rejection for fully actuated mechanical systems. Automatica vol. 44 2863–2868 (2008) – 10.1016/j.automatica.2008.03.030
- Patre, P. M., MacKunis, W., Dupree, K. & Dixon, W. E. Modular Adaptive Control of Uncertain Euler–Lagrange Systems With Additive Disturbances. IEEE Transactions on Automatic Control vol. 56 155–160 (2011) – 10.1109/tac.2010.2081770
- Van der Schaft, (2000)
- van der Schaft, A. Port-Hamiltonian systems: an introductory survey. Proceedings of the International Congress of Mathematicians Madrid, August 22–30, 2006 1339–1365 (2007) doi:10.4171/022-3/65 – 10.4171/022-3/65
- Sira-Ramírez, H., Zurita-Bustamante, E. W. & Luviano-Juárez, A. Control of single input Hamiltonian systems based on the flatness of their tangent linearization. ISA Transactions vol. 127 461–472 (2022) – 10.1016/j.isatra.2021.08.041
- Escobar, G., van der Schaft, A. J. & Ortega, R. A Hamiltonian viewpoint in the modeling of switching power converters. Automatica vol. 35 445–452 (1999) – 10.1016/s0005-1098(98)00196-4
- Ortega, R., Spong, M. W., Gomez-Estern, F. & Blankenstein, G. Stabilization of a class of underactuated mechanical systems via interconnection and damping assignment. IEEE Transactions on Automatic Control vol. 47 1218–1233 (2002) – 10.1109/tac.2002.800770
- Schaft, A. J. Port-Hamiltonian Systems: Network Modeling and Control of Nonlinear Physical Systems. Advanced Dynamics and Control of Structures and Machines 127–167 (2004) doi:10.1007/978-3-7091-2774-2_9 – 10.1007/978-3-7091-2774-2_9
- Wang, M., Liu, Y., Cao, G. & Owens, D. H. Energy‐based finite‐time stabilization and H∞ control of stochastic nonlinear systems. International Journal of Robust and Nonlinear Control vol. 30 7169–7184 (2020) – 10.1002/rnc.5182
- Alkrunz, M. & Yalçın, Y. Adaptive interconnection and damping assignment passivity‐based control for linearly parameterized
discrete‐time port controlled Hamiltonian systems via I&I approach. International Journal of Adaptive Control and Signal Processing vol. 35 69–88 (2020) – 10.1002/acs.3187 - Macchelli, A., Le Gorrec, Y. & Ramirez, H. Exponential Stabilization of Port-Hamiltonian Boundary Control Systems via Energy Shaping. IEEE Transactions on Automatic Control vol. 65 4440–4447 (2020) – 10.1109/tac.2020.3004798
- Jayawardhana, B., Ortega, R., García-Canseco, E. & Castaños, F. Passivity of nonlinear incremental systems: Application to PI stabilization of nonlinear RLC circuits. Systems & Control Letters vol. 56 618–622 (2007) – 10.1016/j.sysconle.2007.03.011
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 53 2527–2542 (2008) – 10.1109/tac.2008.2006930
- Koopman, J. & Jeltsema, D. Casimir-Based Control Beyond the Dissipation Obstacle. IFAC Proceedings Volumes vol. 45 173–177 (2012) – 10.3182/20120829-3-it-4022.00046
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Ortega, R. & García-Canseco, E. Interconnection and Damping Assignment Passivity-Based Control: A Survey. European Journal of Control vol. 10 432–450 (2004) – 10.3166/ejc.10.432-450
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica vol. 39 2059–2069 (2003) – 10.1016/j.automatica.2003.07.005
- Dirksz, D. A. & Scherp, J. M. A. Adaptive tracking control of fully actuated port-Hamiltonian mechanical systems. 2010 IEEE International Conference on Control Applications 1678–1683 (2010) doi:10.1109/cca.2010.5611301 – 10.1109/cca.2010.5611301
- Romero, Passivity-based tracking controllers for mechanical systems with active disturbance rejection. (2015)
- Thenozhi, S., Sanchez, A. C. & Rodriguez-Resendiz, J. A Contraction Theory-Based Tracking Control Design With Friction Identification and Compensation. IEEE Transactions on Industrial Electronics vol. 69 6111–6120 (2022) – 10.1109/tie.2021.3094456
- Yi, B., Wang, R. & Manchester, I. R. Reduced-Order Nonlinear Observers Via Contraction Analysis and Convex Optimization. IEEE Transactions on Automatic Control vol. 67 4045–4060 (2022) – 10.1109/tac.2021.3115887
- Demidovich, (1961)
- LOHMILLER, W. & SLOTINE, J.-J. E. On Contraction Analysis for Non-linear Systems. Automatica vol. 34 683–696 (1998) – 10.1016/s0005-1098(98)00019-3
- Wang, W. & Slotine, J.-J. E. On partial contraction analysis for coupled nonlinear oscillators. Biological Cybernetics vol. 92 38–53 (2004) – 10.1007/s00422-004-0527-x
- Perez, M. A., Tang, Y. & Hernandez, J. C. Adaptive attitude control for spacecraft based on contraction analysis. 2017 IEEE 56th Annual Conference on Decision and Control (CDC) 897–902 (2017) doi:10.1109/cdc.2017.8263773 – 10.1109/cdc.2017.8263773
- Zhang, Adaptive control of manipulators by a contraction analysis approach. (2019)
- Yaghmaei, A. & Yazdanpanah, M. J. Trajectory tracking for a class of contractive port Hamiltonian systems. Automatica vol. 83 331–336 (2017) – 10.1016/j.automatica.2017.06.039
- Reyes-Báez, Tracking control of fully-actuated port-Hamiltonian mechanical systems via sliding manifolds and contraction analysis. (2015)
- Reyes-Báez, A family of virtual contraction based controllers for tracking of flexible-joints port-Hamiltonian robots: theory and experiments. Internat J Robust Nonlinear Control (2017)
- Ge, (1998)
- Yuzhen Wang & Shuzhi Sam Ge. Augmented Hamiltonian Formulation and Energy-Based Control Design of Uncertain Mechanical Systems. IEEE Transactions on Control Systems Technology vol. 16 202–213 (2008) – 10.1109/tcst.2007.903367
- Liu, Y. & Yu, H. A survey of underactuated mechanical systems. IET Control Theory & Applications vol. 7 921–935 (2013) – 10.1049/iet-cta.2012.0505
- Reyes, F. & Kelly, R. Experimental evaluation of model-based controllers on a direct-drive robot arm. Mechatronics vol. 11 267–282 (2001) – 10.1016/s0957-4158(00)00008-8
- Fuyan Cheng, Guomin Zhong, Youshan Li & Zhengming Xu. Fuzzy control of a double-inverted pendulum. Fuzzy Sets and Systems vol. 79 315–321 (1996) – 10.1016/0165-0114(95)00156-5