Virtual contractivity-based control of fully-actuated mechanical systems in the port-Hamiltonian framework
Authors
Rodolfo Reyes-Báez, Arjan van der Schaft, Bayu Jayawardhana
Abstract
We present a trajectory tracking control design method for a class of mechanical systems in the port-Hamiltonian framework. The proposed solution is based on the virtual contractivity-based control (v-CBC) method, which employs the notions of virtual systems and of contractivity. This approach leads to a family of asymptotic tracking controllers that are not limited to those that preserve the pH structure of the closed-loop system nor require an intermediate change of coordinates. Nevertheless, structure preservation and other properties (e.g., passivity) are possible under sufficient conditions. The performance of the proposed v-CBC scheme is experimentally evaluated on a planar robot of two degrees of freedom (DoF).
Keywords
Port-Hamiltonian systems; Trajectory tracking; Virtual systems; Contraction analysis; Mechanical systems
Citation
- Journal: Automatica
- Year: 2022
- Volume: 141
- Issue:
- Pages: 110275
- Publisher: Elsevier BV
- DOI: 10.1016/j.automatica.2022.110275
BibTeX
@article{Reyes_B_ez_2022,
title={{Virtual contractivity-based control of fully-actuated mechanical systems in the port-Hamiltonian framework}},
volume={141},
ISSN={0005-1098},
DOI={10.1016/j.automatica.2022.110275},
journal={Automatica},
publisher={Elsevier BV},
author={Reyes-Báez, Rodolfo and van der Schaft, Arjan and Jayawardhana, Bayu},
year={2022},
pages={110275}
}
References
- Angeli, D. A Lyapunov approach to incremental stability properties. IEEE Transactions on Automatic Control vol. 47 410–421 (2002) – 10.1109/9.989067
- Borja, P., Ortega, R. & Scherpen, J. M. A. New Results on Stabilization of Port-Hamiltonian Systems via PID Passivity-Based Control. IEEE Transactions on Automatic Control vol. 66 625–636 (2021) – 10.1109/tac.2020.2986731
- Dirksz, Adaptive tracking control of fully actuated port-Hamiltonian mechanical systems. (2010)
- Forni, F. & Sepulchre, R. On differentially dissipative dynamical systems. IFAC Proceedings Volumes vol. 46 15–20 (2013) – 10.3182/20130904-3-fr-2041.00038
- Forni, F. & Sepulchre, R. A Differential Lyapunov Framework for Contraction Analysis. IEEE Transactions on Automatic Control vol. 59 614–628 (2014) – 10.1109/tac.2013.2285771
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica vol. 39 2059–2069 (2003) – 10.1016/j.automatica.2003.07.005
- Jayawardhana, Passivity of nonlinear incremental systems: Application to PI stabilization of nonlinear RLC circuits. Systems & Control Letters (2007)
- Kawano, Y. & Ohtsuka, T. Nonlinear Eigenvalue Approach to Differential Riccati Equations for Contraction Analysis. IEEE Transactions on Automatic Control vol. 62 6497–6504 (2017) – 10.1109/tac.2017.2655443
- LOHMILLER, W. & SLOTINE, J.-J. E. On Contraction Analysis for Non-linear Systems. Automatica vol. 34 683–696 (1998) – 10.1016/s0005-1098(98)00019-3
- Manchester, I. R. & Slotine, J.-J. E. Control Contraction Metrics and Universal Stabilizability. IFAC Proceedings Volumes vol. 47 8223–8228 (2014) – 10.3182/20140824-6-za-1003.02100
- Manchester, Unifying robot trajectory tracking with control contraction metrics. (2018)
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- (2008)
- Reyes-Báez, (2019)
- Reyes‐Báez, R., van der Schaft, A., Jayawardhana, B. & Pan, L. A family of virtual contraction based controllers for tracking of flexible‐joints port‐Hamiltonian robots: Theory and experiments. International Journal of Robust and Nonlinear Control vol. 30 3269–3295 (2020) – 10.1002/rnc.4929
- Romero, J. G., Ortega, R. & Sarras, I. A Globally Exponentially Stable Tracking Controller for Mechanical Systems Using Position Feedback. IEEE Transactions on Automatic Control vol. 60 818–823 (2015) – 10.1109/tac.2014.2330701
- Slotine, J.-J. E. & Weiping Li. On the Adaptive Control of Robot Manipulators. The International Journal of Robotics Research vol. 6 49–59 (1987) – 10.1177/027836498700600303
- Sontag, Contractive systems with inputs. (2010)
- van der Schaft, (2017)
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- van der Schaft, The Hamiltonian formulation of energy conserving physical systems with external ports. Archiv für Elektronik und Übertragungstechnik (1995)
- Venkatraman, A., Ortega, R., Sarras, I. & van der Schaft, A. Speed Observation and Position Feedback Stabilization of Partially Linearizable Mechanical Systems. IEEE Transactions on Automatic Control vol. 55 1059–1074 (2010) – 10.1109/tac.2010.2042010
- Wang, W. & Slotine, J.-J. E. On partial contraction analysis for coupled nonlinear oscillators. Biological Cybernetics vol. 92 38–53 (2004) – 10.1007/s00422-004-0527-x
- Yaghmaei, A. & Yazdanpanah, M. J. Trajectory tracking for a class of contractive port Hamiltonian systems. Automatica vol. 83 331–336 (2017) – 10.1016/j.automatica.2017.06.039
- Zamani, M. & Tabuada, P. Backstepping Design for Incremental Stability. IEEE Transactions on Automatic Control vol. 56 2184–2189 (2011) – 10.1109/tac.2011.2158135