Modelling, Control and Stability Analysis of Flexible Rotating Beam's Impacts During Contact Scenario
Authors
Andrea Mattioni, Yongxin Wu, Yann Le Gorrec
Abstract
This paper considers the problem of a rotating flexible beam in collision with an external object. The flexible beam’s colliding equations exhibit instant changes during impact times, therefore the model is cast in the class of switched infinite dimensional operator systems. The aim is to study the stability of the closed loop system with a PD control law, making use of the semigroup formalism together with the Lyapunov stability theory. To this end, we present a new stability result making use of multiple Lyapunov functions obtained as an adaptation of a theorem from finite dimensional hybrid systems theory. We show the port-Hamiltonian modelling procedure for a controlled rotating flexible beam in impact scenario, using distributed parameter equations to describe the beam’s dynamic. Then, we compute the equilibrium position of the closed loop system and using the shifted variables with respect to the equilibrium position, we cast the system in the class of switched infinite dimensional operator systems. Finally we select the Lyapunov functions for the contact and non-contact phases and we show, through numerical simulations, that they respect the assumptions of the proposed stability theorem.
Citation
- Journal: 2021 American Control Conference (ACC)
- Year: 2021
- Volume:
- Issue:
- Pages: 2800–2805
- Publisher: IEEE
- DOI: 10.23919/acc50511.2021.9483313
BibTeX
@inproceedings{Mattioni_2021,
title={{Modelling, Control and Stability Analysis of Flexible Rotating Beam’s Impacts During Contact Scenario}},
DOI={10.23919/acc50511.2021.9483313},
booktitle={{2021 American Control Conference (ACC)}},
publisher={IEEE},
author={Mattioni, Andrea and Wu, Yongxin and Gorrec, Yann Le},
year={2021},
pages={2800--2805}
}
References
- Amin, S., Hante, F. M. & Bayen, A. M. Stability analysis of linear hyperbolic systems with switching parameters and boundary conditions. 2008 47th IEEE Conference on Decision and Control 2081–2086 (2008) doi:10.1109/cdc.2008.4739181 – 10.1109/cdc.2008.4739181
- PRIEUR, C., GIRARD, A. & WITRANT, E. Lyapunov functions for switched linear hyperbolic systems. IFAC Proceedings Volumes vol. 45 382–387 (2012) – 10.3182/20120606-3-nl-3011.00041
- Branicky, M. S. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Transactions on Automatic Control vol. 43 475–482 (1998) – 10.1109/9.664150
- Curtain, R. & Zwart, H. Introduction to Infinite-Dimensional Systems Theory. Texts in Applied Mathematics (Springer New York, 2020). doi:10.1007/978-1-0716-0590-5 – 10.1007/978-1-0716-0590-5
- Hunt, K. H. & Crossley, F. R. E. Coefficient of Restitution Interpreted as Damping in Vibroimpact. Journal of Applied Mechanics vol. 42 440–445 (1975) – 10.1115/1.3423596
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica vol. 40 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Feliu-Talegon, D., Feliu-Batlle, V., Tejado, I., Vinagre, B. M. & HosseinNia, S. H. Stable force control and contact transition of a single link flexible robot using a fractional-order controller. ISA Transactions vol. 89 139–157 (2019) – 10.1016/j.isatra.2018.12.031
- Becedas, J., Payo, I. & Feliu, V. Generalised proportional integral torque control for single-link flexible manipulators. IET Control Theory & Applications vol. 4 773–783 (2010) – 10.1049/iet-cta.2008.0458
- Ching, F. M. C. & Wang, D. Exact solution and infinite-dimensional stability analysis of a single flexible link in collision. IEEE Transactions on Robotics and Automation vol. 19 1015–1020 (2003) – 10.1109/tra.2003.819716
- Vossoughi, G. R. & Karimzadeh, A. Impedance control of a two degree-of-freedom planar flexible link manipulator using singular perturbation theory. Robotica vol. 24 221–228 (2005) – 10.1017/s0263574705002055
- Michel, A. N., Ye Sun & Molchanov, A. P. Stability analysis of discontinuous dynamical systems determined by semigroups. IEEE Transactions on Automatic Control vol. 50 1277–1290 (2005) – 10.1109/tac.2005.854582
- Goebel, R., Sanfelice, R. G. & Teel, A. R. Hybrid dynamical systems. IEEE Control Systems vol. 29 28–93 (2009) – 10.1109/mcs.2008.931718
- Ramirez, H., Le Gorrec, Y. & Zwart, H. Exponential stabilization of a class of flexible microgrippers using dynamic boundary port Hamiltonian control. 52nd IEEE Conference on Decision and Control 460–465 (2013) doi:10.1109/cdc.2013.6759924 – 10.1109/cdc.2013.6759924
- Aoues, S., Cardoso-Ribeiro, F. L., Matignon, D. & Alazard, D. Modeling and Control of a Rotating Flexible Spacecraft: A Port-Hamiltonian Approach. IEEE Transactions on Control Systems Technology vol. 27 355–362 (2019) – 10.1109/tcst.2017.2771244
- Sasane, A. Stability of switching infinite-dimensional systems. Automatica vol. 41 75–78 (2005) – 10.1016/j.automatica.2004.07.013