Exponential stabilization of a clamped Timoshenko beam with actuation on a tip mass
Authors
Andrea Mattioni, Yongxin Wu, Yann Le Gorrec
Abstract
In this paper, we consider the stabilization of a clamped beam with torque and force actuation on a mass situated at the other side of the beam. We show how to derive the model starting from the Principle of Least Action and we rewrite it as the interconnection between two port- Hamiltonian systems: an infinite dimensional system and a finite dimensional one. Therefore, we propose a control law that allows to exponentially stabilize the origin of the closed- loop system. Further, we show how to explicitly compute, from the system and control parameters, the exponential decreasing rate of the system’s norm along time. For a sake of conciseness, we only sketch the theoretical proofs. Finally, we provide some numerical simulations illustrating the closed-loop performances with different choices of the control parameters.
Citation
- Journal: 2021 60th IEEE Conference on Decision and Control (CDC)
- Year: 2021
- Volume:
- Issue:
- Pages: 6200–6205
- Publisher: IEEE
- DOI: 10.1109/cdc45484.2021.9683504
BibTeX
@inproceedings{Mattioni_2021,
title={{Exponential stabilization of a clamped Timoshenko beam with actuation on a tip mass}},
DOI={10.1109/cdc45484.2021.9683504},
booktitle={{2021 60th IEEE Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Mattioni, Andrea and Wu, Yongxin and Gorrec, Yann Le},
year={2021},
pages={6200--6205}
}
References
- duindam, Modeling and Control of Complex Physical Systems - The port-Hamiltonian Approach. (2009)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- villegas, A port-Hamiltonian approach to distributed parameter systems. Ph D Thesis of the University of Twente (2007)
- augner, Stabilisation of Infinite-Dimensional Port- Hamiltonian Systems via Dissipative Boundary Feedback. Ph D thesis Bergische Universitat Wuppertal (2018)
- jacob, Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces. Number 223 in Operator Theory: Advances and Applications. (2012)
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Transactions on Automatic Control vol. 59 2849–2855 (2014) – 10.1109/tac.2014.2315754
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- curtain, Introduction to Infinite-Dimensional Linear Systems Theory, a state space approach. (2020)
- de Queiroz, M. S., Dawson, D. M. & Zhang, F. Boundary control of a rotating flexible body-beam system. Proceedings of the 1997 IEEE International Conference on Control Applications 812–817 doi:10.1109/cca.1997.627761 – 10.1109/cca.1997.627761
- Daafouz, J., Tucsnak, M. & Valein, J. Nonlinear control of a coupled PDE/ODE system modeling a switched power converter with a transmission line. Systems & Control Letters vol. 70 92–99 (2014) – 10.1016/j.sysconle.2014.05.009
- Mattioni, A., Wu, Y. & Le Gorrec, Y. Infinite dimensional model of a double flexible-link manipulator: The Port-Hamiltonian approach. Applied Mathematical Modelling vol. 83 59–75 (2020) – 10.1016/j.apm.2020.02.008
- He, W. & Ge, S. S. Vibration Control of a Nonuniform Wind Turbine Tower via Disturbance Observer. IEEE/ASME Transactions on Mechatronics vol. 20 237–244 (2015) – 10.1109/tmech.2014.2313876
- Endo, T., Sasaki, M., Matsuno, F. & Jia, Y. Contact-Force Control of a Flexible Timoshenko Arm in Rigid/Soft Environment. IEEE Transactions on Automatic Control vol. 62 2546–2553 (2017) – 10.1109/tac.2016.2599434
- Conrad, F. & Morgül, Ö. On the Stabilization of a Flexible Beam with a Tip Mass. SIAM Journal on Control and Optimization vol. 36 1962–1986 (1998) – 10.1137/s0363012996302366
- Miletic, M., Sturzer, D., Arnold, A. & Kugi, A. Stability of an Euler-Bernoulli Beam With a Nonlinear Dynamic Feedback System. IEEE Transactions on Automatic Control vol. 61 2782–2795 (2016) – 10.1109/tac.2015.2499604
- Boudaoud, M., Haddab, Y. & Le Gorrec, Y. Modeling and Optimal Force Control of a Nonlinear Electrostatic Microgripper. IEEE/ASME Transactions on Mechatronics vol. 18 1130–1139 (2013) – 10.1109/tmech.2012.2197216
- Aoues, S., Cardoso-Ribeiro, F. L., Matignon, D. & Alazard, D. Modeling and Control of a Rotating Flexible Spacecraft: A Port-Hamiltonian Approach. IEEE Transactions on Control Systems Technology vol. 27 355–362 (2019) – 10.1109/tcst.2017.2771244
- Grobbelaar-Van Dalsen, M. Uniform stability for the Timoshenko beam with tip load. Journal of Mathematical Analysis and Applications vol. 361 392–400 (2010) – 10.1016/j.jmaa.2009.06.059
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica vol. 40 757–771 (2004) – 10.1016/j.automatica.2003.12.017