Self-oscillations of a Vocal Apparatus: A Port-Hamiltonian Formulation
Authors
Abstract
Port Hamiltonian systems (PHS) are open passive systems that fulfil a power balance: they correspond to dynamical systems composed of energy-storing elements, energy-dissipating elements and external ports, endowed with a geometric structure (called Dirac structure) that encodes conservative interconnections. This paper presents a minimal PHS model of the full vocal apparatus. Elementary components are: (a) an ideal subglottal pressure supply, (b) a glottal flow in a mobile channel, (c) vocal-folds, (d) an acoustic resonator reduced to a single mode. Particular attention is paid to the energetic consistency of each component, to passivity and to the conservative interconnection. Simulations are presented. They show the ability of the model to produce a variety of regimes, including self-sustained oscillations. Typical healthy or pathological configuration laryngeal configurations are explored.
Keywords
Vocal Apparatus; port-Hamiltonian Systems (PHS); Open Passive Systems; Glottal Flow; Dirac Structure
Citation
- ISBN: 9783319684444
- Publisher: Springer International Publishing
- DOI: 10.1007/978-3-319-68445-1_44
- Note: International Conference on Geometric Science of Information
BibTeX
@inbook{H_lie_2017,
title={{Self-oscillations of a Vocal Apparatus: A Port-Hamiltonian Formulation}},
ISBN={9783319684451},
ISSN={1611-3349},
DOI={10.1007/978-3-319-68445-1_44},
booktitle={{Geometric Science of Information}},
publisher={Springer International Publishing},
author={Hélie, Thomas and Silva, Fabrice},
year={2017},
pages={375--383}
}
References
- van den Berg, Jw., Zantema, J. T. & Doornenbal, P., Jr. On the Air Resistance and the Bernoulli Effect of the Human Larynx. The Journal of the Acoustical Society of America vol. 29 626–631 (1957) – 10.1121/1.1908987
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. (2014) doi:10.1561/9781601987877 – 10.1561/9781601987877
- Encina, M., Yuz, J., Zanartu, M. & Galindo, G. Vocal fold modeling through the port-Hamiltonian systems approach. 2015 IEEE Conference on Control Applications (CCA) 1558–1563 (2015) doi:10.1109/cca.2015.7320832 – 10.1109/cca.2015.7320832
- Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute vol. 329 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
- Flanagan, J. & Landgraf, L. Self-oscillating source for vocal-tract synthesizers. IEEE Transactions on Audio and Electroacoustics vol. 16 57–64 (1968) – 10.1109/tau.1968.1161949
- Awrejcewicz, J. Numerical analysis of the oscillations of human vocal cords. Nonlinear Dynamics vol. 2 35–52 (1991) – 10.1007/bf00045054
- Lopes, N. & Hélie, T. Energy Balanced Model of a Jet Interacting With a Brass Player’s Lip. Acta Acustica united with Acustica vol. 102 141–154 (2016) – 10.3813/aaa.918931
- Lopes, N.: Approche passive pour la modélisation, la simulation et l’étude d’un banc de test robotisé pour les instruments de type cuivre. Ph.D. thesis, UPMC, Paris (2016)
- Falaize, A.: PyPHS: passive modeling and simulation in python. Software. https://afalaize.github.io/pyphs/ . last viewed on 21st April 2017
- P Badin. Badin, P., Fant, G.: Notes on vocal tract computation. STL-QPSR 25(2–3), 53–108 (1984) (1984)
- Giovanni, A. et al. Nonlinear behavior of vocal fold vibration: The role of coupling between the vocal folds. Journal of Voice vol. 13 465–476 (1999) – 10.1016/s0892-1997(99)80002-2