A network dynamics approach to chemical reaction networks
Authors
A. J. van der Schaft, S. Rao, B. Jayawardhana
Abstract
A treatment of a chemical reaction network theory is given from the perspective of nonlinear network dynamics, in particular of consensus dynamics. By starting from the complex-balanced assumption, the reaction dynamics governed by mass action kinetics can be rewritten into a form which allows for a very simple derivation of a number of key results in the chemical reaction network theory, and which directly relates to the thermodynamics and port-Hamiltonian formulation of the system. Central in this formulation is the definition of a balanced Laplacian matrix on the graph of chemical complexes together with a resulting fundamental inequality. This immediately leads to the characterisation of the set of equilibria and their stability. Furthermore, the assumption of complex balancedness is revisited from the point of view of Kirchhoff’s matrix tree theorem. Both the form of the dynamics and the deduced behaviour are very similar to consensus dynamics, and provide additional perspectives to the latter. Finally, using the classical idea of extending the graph of chemical complexes by a ‘zero’ complex, a complete steady-state stability analysis of mass action kinetics reaction networks with constant inflows and mass action kinetics outflows is given, and a unified framework is provided for structure-preserving model reduction of this important class of open reaction networks.
Citation
- Journal: International Journal of Control
- Year: 2016
- Volume: 89
- Issue: 4
- Pages: 731–745
- Publisher: Informa UK Limited
- DOI: 10.1080/00207179.2015.1095353
BibTeX
@article{van_der_Schaft_2015,
title={{A network dynamics approach to chemical reaction networks}},
volume={89},
ISSN={1366-5820},
DOI={10.1080/00207179.2015.1095353},
number={4},
journal={International Journal of Control},
publisher={Informa UK Limited},
author={van der Schaft, A. J. and Rao, S. and Jayawardhana, B.},
year={2015},
pages={731--745}
}
References
- Anderson, D. F. A Proof of the Global Attractor Conjecture in the Single Linkage Class Case. SIAM Journal on Applied Mathematics vol. 71 1487–1508 (2011) – 10.1137/11082631x
- Angeli, D. A Tutorial on Chemical Reaction Network Dynamics. European Journal of Control vol. 15 398–406 (2009) – 10.3166/ejc.15.398-406
- Angeli, D. Boundedness analysis for open Chemical Reaction Networks with mass-action kinetics. Natural Computing vol. 10 751–774 (2009) – 10.1007/s11047-009-9163-7
- Angeli, D., De Leenheer, P. & Sontag, E. D. Chemical networks with inflows and outflows: A positive linear differential inclusions approach. Biotechnology Progress vol. 25 632–642 (2009) – 10.1002/btpr.162
- Angeli, D., De Leenheer, P. & Sontag, E. D. Persistence Results for Chemical Reaction Networks with Time-Dependent Kinetics and No Global Conservation Laws. SIAM Journal on Applied Mathematics vol. 71 128–146 (2011) – 10.1137/090779401
- Bollobás, B. Modern Graph Theory. Graduate Texts in Mathematics (Springer New York, 1998). doi:10.1007/978-1-4612-0619-4 – 10.1007/978-1-4612-0619-4
- Chaves, M. Input-to-State Stability of Rate-Controlled Biochemical Networks. SIAM Journal on Control and Optimization vol. 44 704–727 (2005) – 10.1137/s0363012903437964
- Cherukuri, A. & Cortes, J. Distributed Generator Coordination for Initialization and Anytime Optimization in Economic Dispatch. IEEE Transactions on Control of Network Systems vol. 2 226–237 (2015) – 10.1109/tcns.2015.2399191
- Cortés, J. Distributed algorithms for reaching consensus on general functions. Automatica vol. 44 726–737 (2008) – 10.1016/j.automatica.2007.07.022
- Craciun, G. & Feinberg, M. Multiple Equilibria in Complex Chemical Reaction Networks: Semiopen Mass Action Systems. SIAM Journal on Applied Mathematics vol. 70 1859–1877 (2010) – 10.1137/090756387
- Dickenstein, A. & Pérez Millán, M. How Far is Complex Balancing from Detailed Balancing? Bulletin of Mathematical Biology vol. 73 811–828 (2011) – 10.1007/s11538-010-9611-7
- Ederer, M. & Gilles, E. D. Thermodynamically Feasible Kinetic Models of Reaction Networks. Biophysical Journal vol. 92 1846–1857 (2007) – 10.1529/biophysj.106.094094
- Feinberg, M. Complex balancing in general kinetic systems. Archive for Rational Mechanics and Analysis vol. 49 187–194 (1972) – 10.1007/bf00255665
- Feinberg, M. Necessary and sufficient conditions for detailed balancing in mass action systems of arbitrary complexity. Chemical Engineering Science vol. 44 1819–1827 (1989) – 10.1016/0009-2509(89)85124-3
- Feinberg, M. The existence and uniqueness of steady states for a class of chemical reaction networks. Archive for Rational Mechanics and Analysis vol. 132 311–370 (1995) – 10.1007/bf00375614
- Feinberg, M. & Horn, F. J. M. Dynamics of open chemical systems and the algebraic structure of the underlying reaction network. Chemical Engineering Science vol. 29 775–787 (1974) – 10.1016/0009-2509(74)80195-8
- Flach, E. H. & Schnell, S. Stability of open pathways. Mathematical Biosciences vol. 228 147–152 (2010) – 10.1016/j.mbs.2010.09.002
- Gatermann K, Chemical reactions stoichiometric network analysis (2002)
- Godsil, C. & Royle, G. Algebraic Graph Theory. Graduate Texts in Mathematics (Springer New York, 2001). doi:10.1007/978-1-4613-0163-9 – 10.1007/978-1-4613-0163-9
- Gunawardena, J. Time‐scale separation – Michaelis and Menten’s old idea, still bearing fruit. The FEBS Journal vol. 281 473–488 (2013) – 10.1111/febs.12532
- Hangos K.M., Process modelling and model analysis (2001)
- Horn, F. & Jackson, R. General mass action kinetics. Archive for Rational Mechanics and Analysis vol. 47 81–116 (1972) – 10.1007/bf00251225
- Horn, F. Necessary and sufficient conditions for complex balancing in chemical kinetics. Archive for Rational Mechanics and Analysis vol. 49 172–186 (1972) – 10.1007/bf00255664
- Kirchhoff, G. Ueber die Auflösung der Gleichungen, auf welche man bei der Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird. Annalen der Physik vol. 148 497–508 (1847) – 10.1002/andp.18471481202
- Kron G, Tensor analysis of networks (1939)
- Mirzaev, I. & Gunawardena, J. Laplacian Dynamics on General Graphs. Bulletin of Mathematical Biology vol. 75 2118–2149 (2013) – 10.1007/s11538-013-9884-8
- Mitchell, S. & Mendes, P. A Computational Model of Liver Iron Metabolism. PLoS Computational Biology vol. 9 e1003299 (2013) – 10.1371/journal.pcbi.1003299
- Oster, G. F. & Perelson, A. S. Chemical reaction dynamics. Archive for Rational Mechanics and Analysis vol. 55 230–274 (1974) – 10.1007/bf00281751
- Oster, G. F., Perelson, A. S. & Katchalsky, A. Network thermodynamics: dynamic modelling of biophysical systems. Quarterly Reviews of Biophysics vol. 6 1–134 (1973) – 10.1017/s0033583500000081
- Rao, S., van der Schaft, A. & Jayawardhana, B. A graph-theoretical approach for the analysis and model reduction of complex-balanced chemical reaction networks. Journal of Mathematical Chemistry vol. 51 2401–2422 (2013) – 10.1007/s10910-013-0218-8
- Rao, S., der Schaft, A. van, Eunen, K. van, Bakker, B. M. & Jayawardhana, B. A model reduction method for biochemical reaction networks. BMC Systems Biology vol. 8 (2014) – 10.1186/1752-0509-8-52
- Schuster, S. & Schuster, R. A generalization of Wegscheider’s condition. Implications for properties of steady states and for quasi-steady-state approximation. Journal of Mathematical Chemistry vol. 3 25–42 (1989) – 10.1007/bf01171883
- Siegel, D. & MacLean, D. Journal of Mathematical Chemistry vol. 27 89–110 (2000) – 10.1023/a:1019183206064
- Sontag, E. D. Structure and stability of certain chemical networks and applications to the kinetic proofreading model of T-cell receptor signal transduction. IEEE Transactions on Automatic Control vol. 46 1028–1047 (2001) – 10.1109/9.935056
- Uhlendorf, J. et al. Long-term model predictive control of gene expression at the population and single-cell levels. Proceedings of the National Academy of Sciences vol. 109 14271–14276 (2012) – 10.1073/pnas.1206810109
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- van der Schaft, A. Characterization and partial synthesis of the behavior of resistive circuits at their terminals. Systems & Control Letters vol. 59 423–428 (2010) – 10.1016/j.sysconle.2010.05.005
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- van der Schaft, A. J. & Maschke, B. M. Port-Hamiltonian Systems on Graphs. SIAM Journal on Control and Optimization vol. 51 906–937 (2013) – 10.1137/110840091
- van der Schaft A.J., Archiv für Elektronik und Übertragungstechnik (1995)
- van der Schaft, A., Rao, S. & Jayawardhana, B. On the Mathematical Structure of Balanced Chemical Reaction Networks Governed by Mass Action Kinetics. SIAM Journal on Applied Mathematics vol. 73 953–973 (2013) – 10.1137/11085431x
- van der Schaft, A., Rao, S. & Jayawardhana, B. Complex and detailed balancing of chemical reaction networks revisited. Journal of Mathematical Chemistry vol. 53 1445–1458 (2015) – 10.1007/s10910-015-0498-2
- van Eunen, K., Kiewiet, J. A. L., Westerhoff, H. V. & Bakker, B. M. Testing Biochemistry Revisited: How In Vivo Metabolism Can Be Understood from In Vitro Enzyme Kinetics. PLoS Computational Biology vol. 8 e1002483 (2012) – 10.1371/journal.pcbi.1002483
- van Eunen, K. et al. Biochemical Competition Makes Fatty-Acid β-Oxidation Vulnerable to Substrate Overload. PLoS Computational Biology vol. 9 e1003186 (2013) – 10.1371/journal.pcbi.1003186