Distributed-Parameter Port-Hamiltonian Systems in Discrete-Time
Authors
Abstract
This paper presents a design framework of discrete-time regulators for linear, port-Hamiltonian, boundary control systems. The contribution is twofold. At first, a discrete-time approximation of the plant dynamics originally described by a linear PDE with boundary actuation is introduced. The discretisation is performed in time only. Thus, the “distributed nature” of the state is maintained. Such a system inherits the passivity of the original one and is well-posed, namely the “next” state always exists. The second result is the characterisation of discrete-time, linear controllers in the port-Hamiltonian form that render the closed-loop dynamics asymptotically stable. A numerical example illustrates the effectiveness of the proposed framework.
Citation
- Journal: 2023 62nd IEEE Conference on Decision and Control (CDC)
- Year: 2023
- Volume:
- Issue:
- Pages: 2931–2936
- Publisher: IEEE
- DOI: 10.1109/cdc49753.2023.10383674
BibTeX
@inproceedings{Macchelli_2023,
title={{Distributed-Parameter Port-Hamiltonian Systems in Discrete-Time}},
DOI={10.1109/cdc49753.2023.10383674},
booktitle={{2023 62nd IEEE Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Macchelli, Alessandro},
year={2023},
pages={2931--2936}
}
References
- Maschke. Non-linear Control Systems (NOLCOS 1992). Proceedings of the 3rd IFAC Symposium on
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Kotyczka, P. & Lefèvre, L. Discrete-time port-Hamiltonian systems: A definition based on symplectic integration. Systems & Control Letters vol. 133 104530 (2019) – 10.1016/j.sysconle.2019.104530
- Moreschini, A., Mattioni, M., Monaco, S. & Normand-Cyrot, D. Stabilization of Discrete Port-Hamiltonian Dynamics via Interconnection and Damping Assignment. IEEE Control Systems Letters vol. 5 103–108 (2021) – 10.1109/lcsys.2020.3000705
- Macchelli, A. Trajectory Tracking for Discrete-Time Port-Hamiltonian Systems. IEEE Control Systems Letters vol. 6 3146–3151 (2022) – 10.1109/lcsys.2022.3182845
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Balas, M. J. The structure of discrete-time finite-dimensional control of distributed parameter systems. Journal of Mathematical Analysis and Applications vol. 102 519–538 (1984) – 10.1016/0022-247x(84)90190-2
- Halanay, A. & Ionescu, V. Time-Varying Discrete Linear Systems. (Birkhäuser Basel, 1994). doi:10.1007/978-3-0348-8499-0 – 10.1007/978-3-0348-8499-0
- Curtain, R. F. & Zwart, H. An Introduction to Infinite-Dimensional Linear Systems Theory. Texts in Applied Mathematics (Springer New York, 1995). doi:10.1007/978-1-4612-4224-6 – 10.1007/978-1-4612-4224-6
- Gonzalez, O. Time integration and discrete Hamiltonian systems. Journal of Nonlinear Science vol. 6 449–467 (1996) – 10.1007/bf02440162
- Aoues, S., Di Loreto, M., Eberard, D. & Marquis-Favre, W. Hamiltonian systems discrete-time approximation: Losslessness, passivity and composability. Systems & Control Letters vol. 110 9–14 (2017) – 10.1016/j.sysconle.2017.10.003
- Moreschini, A., Mattioni, M., Monaco, S. & Normand-Cyrot, D. Discrete port-controlled Hamiltonian dynamics and average passivation. 2019 IEEE 58th Conference on Decision and Control (CDC) 1430–1435 (2019) doi:10.1109/cdc40024.2019.9029809 – 10.1109/cdc40024.2019.9029809
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Transactions on Automatic Control vol. 54 142–147 (2009) – 10.1109/tac.2008.2007176
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Transactions on Automatic Control vol. 59 2849–2855 (2014) – 10.1109/tac.2014.2315754
- Jacob. Linear Port-Hamiltonian Systems on Infinite-dimensional Spaces, ser. Operator Theory: Advances and Applications (2012)
- Harten, A., Lax, P. D. & Leer, B. van. On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws. SIAM Review vol. 25 35–61 (1983) – 10.1137/1025002
- Havu, V. & Malinen, J. The Cayley Transform as a Time Discretization Scheme. Numerical Functional Analysis and Optimization vol. 28 825–851 (2007) – 10.1080/01630560701493321
- Opmeer, M. R. & Curtain, R. F. New Riccati equations for well-posed linear systems. Systems & Control Letters vol. 52 339–347 (2004) – 10.1016/j.sysconle.2004.02.010
- Dubljevic, S., Humaloja, J.-P. & Kurula, M. Explicit model predictive control for PDEs: The case of a heat equation. IFAC-PapersOnLine vol. 55 460–465 (2022) – 10.1016/j.ifacol.2022.11.096
- Kiguradze, I. T. Boundary-value problems for systems of ordinary differential equations. Journal of Soviet Mathematics vol. 43 2259–2339 (1988) – 10.1007/bf01100360
- Komornik. Exact Controllability and Stabilization - The Multiplier Method (1994)
- Mora, L. A. & Morris, K. Exponential Decay Rate of port-Hamiltonian Systems with one side Boundary Damping. IFAC-PapersOnLine vol. 55 400–405 (2022) – 10.1016/j.ifacol.2022.11.086
- Diagne, A., Bastin, G. & Coron, J.-M. Lyapunov exponential stability of 1-D linear hyperbolic systems of balance laws. Automatica vol. 48 109–114 (2012) – 10.1016/j.automatica.2011.09.030
- Macchelli, A., Le Gorrec, Y., Ramirez, H. & Zwart, H. On the Synthesis of Boundary Control Laws for Distributed Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 62 1700–1713 (2017) – 10.1109/tac.2016.2595263
- Costa-Castelló, R. & Fossas, E. On Preserving Passivity in Sampled-data Linear Systems. European Journal of Control vol. 13 583–590 (2007) – 10.3166/ejc.13.583-590
- Macchelli, A. On the Synthesis of Discrete-time Energy-based Regulators for Port-Hamiltonian Systems. IFAC-PapersOnLine vol. 56 2889–2894 (2023) – 10.1016/j.ifacol.2023.10.1407