Dirac Structures on Hilbert Spaces and Boundary Control of Distributed Port-Hamiltonian Systems
Authors
Abstract
The scope of this paper is to show how to exploit the properties of the Stokes–Dirac structure in the development of energy-based boundary control laws for distributed port-Hamiltonian systems. Usually, stabilisation of non-zero equilibria has been achieved by shaping the open-loop Hamiltonian function by interconnecting a finite-dimensional port-Hamiltonian controller to the boundary of the distributed parameter system. The procedure is based on the presence of structural invariants, namely Casimir functions, in closed-loop, but this approach fails when a non-zero power flow from the controller is required at the equilibrium (dissipation obstacle). This paper illustrates that the class of stabilising controllers can be enlarged by relying on the parametrisation of the system dynamics provided by the image representation of the Stokes–Dirac structure, that is able to show the effects of the boundary inputs on the state evolution in a simple and effective way.
Keywords
Passivity and dissipativity; semigroup and operator theory
Citation
- Journal: IFAC Proceedings Volumes
- Year: 2013
- Volume: 46
- Issue: 26
- Pages: 97–102
- Publisher: Elsevier BV
- DOI: 10.3182/20130925-3-fr-4043.00039
- Note: 1st IFAC Workshop on Control of Systems Governed by Partial Differential Equations
BibTeX
@article{Macchelli_2013,
title={{Dirac Structures on Hilbert Spaces and Boundary Control of Distributed Port-Hamiltonian Systems}},
volume={46},
ISSN={1474-6670},
DOI={10.3182/20130925-3-fr-4043.00039},
number={26},
journal={IFAC Proceedings Volumes},
publisher={Elsevier BV},
author={Macchelli, Alessandro},
year={2013},
pages={97--102}
}
References
- Curtain, (1995)
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM J. Control Optim. 37, 54–91 (1998) – 10.1137/s0363012996312039
- Herrmann, G. Forced Motions of Timoshenko Beams. Journal of Applied Mechanics 22, 53–56 (1955) – 10.1115/1.4010969
- Iftime, O. V. & Sandovici, A. Interconnection of Dirac structures via kernel/image representation. Proceedings of the 2011 American Control Conference 3571–3576 (2011) doi:10.1109/acc.2011.5991091 – 10.1109/acc.2011.5991091
- Iftime, O. V., Sandovici, A. & Golo, G. Tools for analysis of Dirac Structures on Banach Spaces. Proceedings of the 44th IEEE Conference on Decision and Control 3856–3861 doi:10.1109/cdc.2005.1582763 – 10.1109/cdc.2005.1582763
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM J. Control Optim. 44, 1864–1892 (2005) – 10.1137/040611677
- Macchelli, A. Energy shaping of distributed parameter port-Hamiltonian systems based on finite element approximation. Systems & Control Letters 60, 579–589 (2011) – 10.1016/j.sysconle.2011.04.016
- Macchelli, A. Asymptotic stability of forced equilibria for distributed port-Hamiltonian systems. 2012 IEEE 51st IEEE Conference on Decision and Control (CDC) 2934–2939 (2012) doi:10.1109/cdc.2012.6426693 – 10.1109/cdc.2012.6426693
- Macchelli, A. Passivity-based control of implicit port-Hamiltonian systems. 2013 European Control Conference (ECC) 2098–2103 (2013) doi:10.23919/ecc.2013.6669288 – 10.23919/ecc.2013.6669288
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Infinite-Dimensional Port-Hamiltonian Systems. Modeling and Control of Complex Physical Systems 211–271 (2009) doi:10.1007/978-3-642-03196-0_4 – 10.1007/978-3-642-03196-0_4
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM J. Control Optim. 43, 743–767 (2004) – 10.1137/s0363012903429530
- Macchelli, A. & Melchiorri, C. Control by interconnection of mixed port Hamiltonian systems. IEEE Trans. Automat. Contr. 50, 1839–1844 (2005) – 10.1109/tac.2005.858656
- Maschke, B., Ortega, R. & Van Der Schaft, A. J. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Trans. Automat. Contr. 45, 1498–1502 (2000) – 10.1109/9.871758
- Ortega, R. & Mareels, I. Energy-balancing passivity-based control. Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334) 1265–1270 vol.2 (2000) doi:10.1109/acc.2000.876703 – 10.1109/acc.2000.876703
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Energy-shaping of port-controlled Hamiltonian systems by interconnection. Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304) vol. 2 1646–1651 – 10.1109/cdc.1999.830260
- Putting energy back in control. IEEE Control Syst. 21, 18–33 (2001) – 10.1109/37.915398
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Pasumarthy, R. & van der Schaft, A. J. Achievable Casimirs and its implications on control of port-Hamiltonian systems. International Journal of Control 80, 1421–1438 (2007) – 10.1080/00207170701361273
- Rodriguez, H., van der Schaft, A. J. & Ortega, R. On stabilization of nonlinear distributed parameter port-controlled Hamiltonian systems via energy shaping. Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228) vol. 1 131–136 – 10.1109/cdc.2001.980086
- Swaters, (2000)
- van der Schaft, (2000)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics 42, 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Villegas, J. A., Zwart, H., Le Gorrec, Y., Maschke, B. & van der Schaft, A. J. Stability and Stabilization of a Class of Boundary Control Systems. Proceedings of the 44th IEEE Conference on Decision and Control 3850–3855 doi:10.1109/cdc.2005.1582762 – 10.1109/cdc.2005.1582762
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Trans. Automat. Contr. 54, 142–147 (2009) – 10.1109/tac.2008.2007176