Control Oriented Modular Modelling of a Floating Wind Turbine: The Port-Hamiltonian Approach
Authors
Ignacio Diaz, Yann Le Gorrec, Yongxin Wu
Abstract
This paper proposes a control-oriented model of a floating wind turbine, incorporating 2D platform motion via a coupled beam-string structure with axial and transversal deformations. The model of the floating turbine includes the rigid body rotations of the floating platform, maintaining the small deformation approximation for the beam. The port-Hamiltonian approach is used for its modularity and to reflect the system’s passivity. Simulations using a simplified water-structure interaction modelled by Archimedes’ forces on a rectangular platform are given. Leveraging system modularity, control alternatives are discussed.
Keywords
Passivity; Dissipativity; Marine Systems; Aerospace Engineering; Energy Generation; Floating Systems; Flexible Structures; Port Hamiltonian Systems
Citation
- Journal: IFAC-PapersOnLine
- Year: 2025
- Volume: 59
- Issue: 8
- Pages: 125–130
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2025.08.078
- Note: 5th IFAC Workshop on Control of Systems Governed by Partial Differential Equations - CPDE 2025- Beijing, China, June 18 - 20, 2025
BibTeX
@article{Diaz_2025,
title={{Control Oriented Modular Modelling of a Floating Wind Turbine: The Port-Hamiltonian Approach}},
volume={59},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2025.08.078},
number={8},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Diaz, Ignacio and Le Gorrec, Yann and Wu, Yongxin},
year={2025},
pages={125--130}
}
References
- Bakka, T., Karimi, H. & Christiansen, S. Linear parameter‐varying modelling and control of an offshore wind turbine with constrained information. IET Control Theory & Appl 8, 22–29 (2014) – 10.1049/iet-cta.2013.0480
- Cruz, (2016)
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica 40, 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- González Rodriguez, Estimating wind turbines mechanical constants. Renewable Energy and Power Quality Journal (2007)
- He, W., Xiang, W., He, X. & Li, G. Boundary vibration control of a floating wind turbine system with mooring lines. Control Engineering Practice 101, 104423 (2020) – 10.1016/j.conengprac.2020.104423
- Jacob, B. & Zwart, H. An operator theoretic approach to infinite‐dimensional control systems. GAMM-Mitteilungen 41, (2018) – 10.1002/gamm.201800010
- Lannes, D. On the Dynamics of Floating Structures. Ann. PDE 3, (2017) – 10.1007/s40818-017-0029-5
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM J. Control Optim. 44, 1864–1892 (2005) – 10.1137/040611677
- Li, X. & Gao, H. Load Mitigation for a Floating Wind Turbine via Generalized Structural Control. IEEE Trans. Ind. Electron. 63, 332–342 (2016) – 10.1109/tie.2015.2465894
- Macchelli, A., Le Gorrec, Y., Ramirez, H. & Zwart, H. On the Synthesis of Boundary Control Laws for Distributed Port-Hamiltonian Systems. IEEE Trans. Automat. Contr. 62, 1700–1713 (2017) – 10.1109/tac.2016.2595263
- Maschke, B. M. J. & van der Schaft, A. J. Port Controlled Hamiltonian Representation of Distributed Parameter Systems. IFAC Proceedings Volumes 33, 27–37 (2000) – 10.1016/s1474-6670(17)35543-x
- Ponce, C., Wu, Y., Le Gorrec, Y. & Ramirez, H. A systematic methodology for port-Hamiltonian modeling of multidimensional flexible linear mechanical systems. Applied Mathematical Modelling 134, 434–451 (2024) – 10.1016/j.apm.2024.05.040
- Robertson, A. et al. Offshore Code Comparison Collaboration Continuation Within IEA Wind Task 30: Phase II Results Regarding a Floating Semisubmersible Wind System. Volume 9B: Ocean Renewable Energy (2014) doi:10.1115/omae2014-24040 – 10.1115/omae2014-24040
- Rodriguez, (2001)
- Salic, T., Charpentier, J. F., Benbouzid, M. & Le Boulluec, M. Control Strategies for Floating Offshore Wind Turbine: Challenges and Trends. Electronics 8, 1185 (2019) – 10.3390/electronics8101185
- Trenchant, V., Ramirez, H., Le Gorrec, Y. & Kotyczka, P. Finite differences on staggered grids preserving the port-Hamiltonian structure with application to an acoustic duct. Journal of Computational Physics 373, 673–697 (2018) – 10.1016/j.jcp.2018.06.051