Boundary energy-shaping control of an isothermal tubular reactor
Authors
Alessandro Macchelli, Yann Le Gorrec, Héctor Ramírez
Abstract
This paper illustrates a general synthesis methodology of asymptotic stabilizing, energy-based, boundary control laws that are applicable to a large class of distributed port-Hamiltonian systems. The methodological results are applied on a simplified model of an isothermal tubular reactor. Due to the presence of diffusion and convection, such example, even if relatively easy from a computational point of view, is not trivial. The idea here is to design a state feedback law able to perform the energy-shaping task, i.e. able to render the closed-loop system a port-Hamiltonian system with the same structure, but characterized by a new Hamiltonian with a unique and isolated minimum at the equilibrium. Asymptotic stability is then obtained via damping injection on the boundary and is a consequence of the LaSalle’s Invariance Principle in infinite dimensions.
Citation
- Journal: Mathematical and Computer Modelling of Dynamical Systems
- Year: 2017
- Volume: 23
- Issue: 1
- Pages: 77–88
- Publisher: Informa UK Limited
- DOI: 10.1080/13873954.2016.1232282
BibTeX
@article{Macchelli_2016,
title={{Boundary energy-shaping control of an isothermal tubular reactor}},
volume={23},
ISSN={1744-5051},
DOI={10.1080/13873954.2016.1232282},
number={1},
journal={Mathematical and Computer Modelling of Dynamical Systems},
publisher={Informa UK Limited},
author={Macchelli, Alessandro and Le Gorrec, Yann and Ramírez, Héctor},
year={2016},
pages={77--88}
}
References
- van der Schaft A., L2-Gain and Passivity Techniques in Nonlinear Control, Communication and Control Engineering (2000)
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Macchelli A., Chap. Infinite-Dimensional Port-Hamiltonian Systems (2009)
- Macchelli, A. & Melchiorri, C. Modeling and Control of the Timoshenko Beam. The Distributed Port Hamiltonian Approach. SIAM Journal on Control and Optimization vol. 43 743–767 (2004) – 10.1137/s0363012903429530
- Macchelli A., IEEE Trans. (2005)
- Pasumarthy, R. & van der Schaft, A. J. Achievable Casimirs and its implications on control of port-Hamiltonian systems. International Journal of Control vol. 80 1421–1438 (2007) – 10.1080/00207170701361273
- Siuka, A., Schöberl, M. & Schlacher, K. Port-Hamiltonian modelling and energy-based control of the Timoshenko beam. Acta Mechanica vol. 222 69–89 (2011) – 10.1007/s00707-011-0510-2
- Sch¨oberl M., IEEE Trans (2013)
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Macchelli, A. Passivity-Based Control of Implicit Port-Hamiltonian Systems. SIAM Journal on Control and Optimization vol. 52 2422–2448 (2014) – 10.1137/130918228
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Danckwerts, P. V. Continuous flow systems. Chemical Engineering Science vol. 2 1–13 (1953) – 10.1016/0009-2509(53)80001-1
- Arnold, V. I. Mathematical Methods of Classical Mechanics. Graduate Texts in Mathematics (Springer New York, 1989). doi:10.1007/978-1-4757-2063-1 – 10.1007/978-1-4757-2063-1
- Macchelli, A. Dirac structures on Hilbert spaces and boundary control of distributed port-Hamiltonian systems. Systems & Control Letters vol. 68 43–50 (2014) – 10.1016/j.sysconle.2014.03.005
- Macchelli, A. Boundary energy shaping of linear distributed port-Hamiltonian systems. European Journal of Control vol. 19 521–528 (2013) – 10.1016/j.ejcon.2013.10.002
- Ram´ırez H., IEEE Trans. (2014)
- Luo, Z.-H., Guo, B.-Z. & Morgul, O. Stability and Stabilization of Infinite Dimensional Systems with Applications. Communications and Control Engineering (Springer London, 1999). doi:10.1007/978-1-4471-0419-3 – 10.1007/978-1-4471-0419-3