Analysis of Modified Repetitive Control Schemes: the Port-Hamiltonian Approach
Authors
Federico Califano, Alessandro Macchelli, Claudio Melchiorri
Abstract
Repetitive Control (RC) schemes are described by systems of coupled PDEs and ODEs and, in this paper, their stability analysis relies on the modularity of the port-Hamiltonian framework to characterise a family of linear plants for which this control technique can be successfully applied. To achieve this, the regulator, that is in fact an infinite dimensional system, is treated as a boundary control system in port-Hamiltonian form, and novel results dealing with the exponential stabilisation of this class of infinite dimensional systems are exploited. The focus here is on plants that are strictly proper and, as a consequence, on Modified Repetitive Control (MRC) schemes, i.e. RC schemes in which a low-pass filter is in series with the pure delay block. The result is a characterisation of a class of linear systems for which MRC schemes converge.
Keywords
Repetitive Control; Port-Hamiltonian Systems; Exponential Stability; PDE
Citation
- Journal: IFAC-PapersOnLine
- Year: 2018
- Volume: 51
- Issue: 3
- Pages: 107–112
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2018.06.030
- Note: 6th IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control LHMNC 2018
BibTeX
@article{Califano_2018,
title={{Analysis of Modified Repetitive Control Schemes: the Port-Hamiltonian Approach}},
volume={51},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2018.06.030},
number={3},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Califano, Federico and Macchelli, Alessandro and Melchiorri, Claudio},
year={2018},
pages={107--112}
}
References
- Biagiotti, L., Califano, F. & Melchiorri, C. Repetitive control of non-minimum phase systems along B-spline trajectories. 2016 IEEE 55th Conference on Decision and Control (CDC) 5496–5501 (2016) doi:10.1109/cdc.2016.7799113 – 10.1109/cdc.2016.7799113
- Brogliato, B., Maschke, B., Lozano, R. & Egeland, O. Dissipative Systems Analysis and Control. Communications and Control Engineering (Springer London, 2007). doi:10.1007/978-1-84628-517-2 – 10.1007/978-1-84628-517-2
- Califano, F., Macchelli, A. & Melchiorri, C. Stability analysis of repetitive control: The port-Hamiltonian approach. 2017 IEEE 56th Annual Conference on Decision and Control (CDC) 1894–1899 (2017) doi:10.1109/cdc.2017.8263926 – 10.1109/cdc.2017.8263926
- Curtain, (1995)
- Francis, B. A. & Wonham, W. M. The internal model principle of control theory. Automatica vol. 12 457–465 (1976) – 10.1016/0005-1098(76)90006-6
- Hara, S., Yamamoto, Y., Omata, T. & Nakano, M. Repetitive control system: a new type servo system for periodic exogenous signals. IEEE Transactions on Automatic Control vol. 33 659–668 (1988) – 10.1109/9.1274
- Inoue, High accuracy control of a proton synchrotron magnet power supply. IFAC World Congress, Proceeding of the 8th (1981)
- Jacob, (2012)
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Logemann, H., Rebarber, R. & Weiss, G. Conditions for Robustness and Nonrobustness of the Stability of Feedback Systems with Respect to Small Delays in the Feedback Loop. SIAM Journal on Control and Optimization vol. 34 572–600 (1996) – 10.1137/s0363012993250700
- Macchelli, A. Boundary energy shaping of linear distributed port-Hamiltonian systems. European Journal of Control vol. 19 521–528 (2013) – 10.1016/j.ejcon.2013.10.002
- Macchelli, A., Le Gorrec, Y., Ramirez, H. & Zwart, H. On the Synthesis of Boundary Control Laws for Distributed Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 62 1700–1713 (2017) – 10.1109/tac.2016.2595263
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Transactions on Automatic Control vol. 59 2849–2855 (2014) – 10.1109/tac.2014.2315754
- van der Schaft, A. L2 - Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer London, 2000). doi:10.1007/978-1-4471-0507-7 – 10.1007/978-1-4471-0507-7
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Transactions on Automatic Control vol. 54 142–147 (2009) – 10.1109/tac.2008.2007176
- Villegas, J. A., Zwart, H., Le Gorrec, Y., Maschke, B. & van der Schaft, A. J. Stability and Stabilization of a Class of Boundary Control Systems. Proceedings of the 44th IEEE Conference on Decision and Control 3850–3855 doi:10.1109/cdc.2005.1582762 – 10.1109/cdc.2005.1582762
- Weiss, Repetitive control systems: Old and new ideas. (1997)
- Yamamoto, Learning control and related problems in infinite-dimensional systems. (1993)