A Port-Hamiltonian Modeling Approach for Integrated Hydrogen Systems
Authors
Abdullah Shahin, Hannes Gernandt, Anton Plietzsch, Johannes Schiffer
Abstract
Hydrogen’s growing role in the transition towards climate-neutral energy systems necessitates structured modeling frameworks. Existing gas network models, largely developed for natural gas, fail to capture hydrogen systems distinct properties, particularly the coupling of hydrogen pipes with electrolyzers, fuel cells, and electrically driven compressors. In this work, we present a unified systematic port-Hamiltonian (pH) framework for modeling hydrogen systems, which inherently provides a passive input-output map of the overall interconnected system and, thus, a promising foundation for structured analysis, control and optimization of this type of newly emerging energy systems.
Citation
- Journal: 2025 IEEE 64th Conference on Decision and Control (CDC)
- Year: 2025
- Volume:
- Issue:
- Pages: 555–560
- Publisher: IEEE
- DOI: 10.1109/cdc57313.2025.11312948
BibTeX
@inproceedings{Shahin_2025,
title={{A Port-Hamiltonian Modeling Approach for Integrated Hydrogen Systems}},
DOI={10.1109/cdc57313.2025.11312948},
booktitle={{2025 IEEE 64th Conference on Decision and Control (CDC)}},
publisher={IEEE},
author={Shahin, Abdullah and Gernandt, Hannes and Plietzsch, Anton and Schiffer, Johannes},
year={2025},
pages={555--560}
}References
- Neumann F, Zeyen E, Victoria M, Brown T (2023) The potential role of a hydrogen network in Europe. Joule 7(8):1793–1817. https://doi.org/10.1016/j.joule.2023.06.01 – 10.1016/j.joule.2023.06.016
- Yue M, Lambert H, Pahon E, Roche R, Jemei S, Hissel D (2021) Hydrogen energy systems: A critical review of technologies, applications, trends and challenges. Renewable and Sustainable Energy Reviews 146:111180. https://doi.org/10.1016/j.rser.2021.11118 – 10.1016/j.rser.2021.111180
- Joint application for the hydrogen core network. (2024)
- Dawood F, Anda M, Shafiullah GM (2020) Hydrogen production for energy: An overview. International Journal of Hydrogen Energy 45(7):3847–3869. https://doi.org/10.1016/j.ijhydene.2019.12.05 – 10.1016/j.ijhydene.2019.12.059
- Control 1(2–3):173–378. https://doi.org/10.1561/260000000 – 10.1561/2600000002
- Fiaz S, Zonetti D, Ortega R, Scherpen JMA, van der Schaft AJ (2013) A port-Hamiltonian approach to power network modeling and analysis. European Journal of Control 19(6):477–485. https://doi.org/10.1016/j.ejcon.2013.09.00 – 10.1016/j.ejcon.2013.09.002
- Schiffer J, Ortega R, Astolfi A, Raisch J, Sezi T (2014) Conditions for stability of droop-controlled inverter-based microgrids. Automatica 50(10):2457–2469. https://doi.org/10.1016/j.automatica.2014.08.00 – 10.1016/j.automatica.2014.08.009
- Gernandt H, Severino B, Zhang X, Mehrmann V, Strunz K (2025) Port-Hamiltonian Modeling and Control of Electric Vehicle Charging Stations. IEEE Trans Transp Electrific 11(1):2897–2907. https://doi.org/10.1109/tte.2024.342954 – 10.1109/tte.2024.3429545
- Hauschild S-A, Marheineke N, Mehrmann V, Mohring J, Badlyan AM, Rein M, Schmidt M (2020) Port-Hamiltonian Modeling of District Heating Networks. Differential-Algebraic Equations Forum 333–35 – 10.1007/978-3-030-53905-4_11
- Strehle F, Machado JE, Cucuzzella M, Malan AJ, Scherpen JMA, Hohmann S (2022) Port-Hamiltonian Modeling of Hydraulics in 4th Generation District Heating Networks. 2022 IEEE 61st Conference on Decision and Control (CDC) 1182–118 – 10.1109/cdc51059.2022.9992887
- Krishna A, Schiffer J (2021) A Port-Hamiltonian Approach to Modeling and Control of an Electro-Thermal Microgrid. IFAC-PapersOnLine 54(19):287–293. https://doi.org/10.1016/j.ifacol.2021.11.09 – 10.1016/j.ifacol.2021.11.092
- Domschke, Gas network modeling: An overview (extended english version). (2023)
- Malan AJ, Rausche L, Strehle F, Hohmann S (2023) Port-Hamiltonian Modelling for Analysis and Control of Gas Networks. IFAC-PapersOnLine 56(2):5431–5437. https://doi.org/10.1016/j.ifacol.2023.10.19 – 10.1016/j.ifacol.2023.10.193
- Malan AJ, Gießler A, Strehle F, Hohmann S (2024) Passivity-Based Pressure Control for Grid-Forming Compressors in Gas Networks. 2024 European Control Conference (ECC) 1097–110 – 10.23919/ecc64448.2024.10590807
- Bendokat T, Benner P, Grundel S, Nayak AS (2024) Modelling Gas Networks with Compressors: A port‐Hamiltonian Approach. Proc Appl Math and Mech 24(4). https://doi.org/10.1002/pamm.20240016 – 10.1002/pamm.202400164
- Kumar L, Chen J, Wu C, Chen Y, van der Schaft A (2024) A segmented model based fuel delivery control of PEM fuel cells: A port-Hamiltonian approach. Automatica 168:111814. https://doi.org/10.1016/j.automatica.2024.11181 – 10.1016/j.automatica.2024.111814
- Sbarbaro D (2018) On the Port-Hamiltonian Models of some Electrochemical Processes. IFAC-PapersOnLine 51(3):38–43. https://doi.org/10.1016/j.ifacol.2018.06.01 – 10.1016/j.ifacol.2018.06.010
- van der Schaft A (2017) L2-Gain and Passivity Techniques in Nonlinear Control. Springer International Publishin – 10.1007/978-3-319-49992-5
- Pambour KA, Bolado-Lavin R, Dijkema GPJ (2016) An integrated transient model for simulating the operation of natural gas transport systems. Journal of Natural Gas Science and Engineering 28:672–690. https://doi.org/10.1016/j.jngse.2015.11.03 – 10.1016/j.jngse.2015.11.036
- Klopčič N, Esser K, Rauh JF, Sartory M, Trattner A (2024) Modelling hydrogen storage and filling systems: A dynamic and customizable toolkit. International Journal of Hydrogen Energy 49:1180–1195. https://doi.org/10.1016/j.ijhydene.2023.08.03 – 10.1016/j.ijhydene.2023.08.036
- Gravdahl, Passivity based compressor surge control using a close-coupled valve. Proceedings of the 1997 COSY Workshop on Control of Nonlinear and Uncertain Systems
- Espinosa-López M, Darras C, Poggi P, Glises R, Baucour P, Rakotondrainibe A, Besse S, Serre-Combe P (2018) Modelling and experimental validation of a 46 kW PEM high pressure water electrolyzer. Renewable Energy 119:160–173. https://doi.org/10.1016/j.renene.2017.11.08 – 10.1016/j.renene.2017.11.081
- Lichtenberg G, Pangalos G, Cateriano Yáñez C, Luxa A, Jöres N, Schnelle L, Kaufmann C (2022) Implicit multilinear modeling. at - Automatisierungstechnik 70(1):13–30. https://doi.org/10.1515/auto-2021-013 – 10.1515/auto-2021-0133
- Espinosa-López M, Darras C, Poggi P, Glises R, Baucour P, Rakotondrainibe A, Besse S, Serre-Combe P (2018) Modelling and experimental validation of a 46 kW PEM high pressure water electrolyzer. Renewable Energy 119:160–173. https://doi.org/10.1016/j.renene.2017.11.08 – 10.1016/j.renene.2017.11.081
- Pukrushpan JT, Peng H, Stefanopoulou AG (2002) Simulation and Analysis of Transient Fuel Cell System Performance Based on a Dynamic Reactant Flow Model. Dynamic Systems and Control 637–64 – 10.1115/imece2002-32051
- Carmo M, Stolten D (2019) Energy Storage Using Hydrogen Produced From Excess Renewable Electricity. Science and Engineering of Hydrogen-Based Energy Technologies 165–19 – 10.1016/b978-0-12-814251-6.00004-6
- Pfennig M, Schiffer B, Clees T (2025) Thermodynamical and electrochemical model of a PEM electrolyzer plant in the megawatt range with a literature analysis of the fitting parameters. International Journal of Hydrogen Energy 104:567–583. https://doi.org/10.1016/j.ijhydene.2024.04.33 – 10.1016/j.ijhydene.2024.04.335
- Ramirez H, Le Gorrec Y (2022) An Overview on Irreversible Port-Hamiltonian Systems. Entropy 24(10):1478. https://doi.org/10.3390/e2410147 – 10.3390/e24101478
- Yodwong B, Guilbert D, Hinaje M, Phattanasak M, Kaewmanee W, Vitale G (2021) Proton Exchange Membrane Electrolyzer Emulator for Power Electronics Testing Applications. Processes 9(3):498. https://doi.org/10.3390/pr903049 – 10.3390/pr9030498