Port-Hamiltonian Modeling and Control of Electric Vehicle Charging Stations
Authors
Hannes Gernandt, Bernardo Severino, Xinyi Zhang, Volker Mehrmann, Kai Strunz
Abstract
Electric vehicles (EVs) are an important part of future sustainable transportation. The increasing integration of EV charging stations (EVCSs) in the existing power grids requires new scalable control algorithms that maintain the stability and resilience of the grid. Here, we present such a control approach using an averaged port-Hamiltonian (pH) model. In this approach, the underlying switching behavior of the power converters is approximated by an averaged nonlinear system. The averaged models are used to derive various types of stabilizing controllers, including the typically used proportional-integral (PI) controllers. The pH modeling is showcased by means of a generic setup of an EVCS, where the battery of the vehicle is connected to an ac grid via power lines, converters, and filters. Finally, the control design methods are compared for the averaged pH system and validated using a simulation model of the switched charging station.
Citation
- Journal: IEEE Transactions on Transportation Electrification
- Year: 2025
- Volume: 11
- Issue: 1
- Pages: 2897–2907
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/tte.2024.3429545
BibTeX
@article{Gernandt_2025,
title={{Port-Hamiltonian Modeling and Control of Electric Vehicle Charging Stations}},
volume={11},
ISSN={2372-2088},
DOI={10.1109/tte.2024.3429545},
number={1},
journal={IEEE Transactions on Transportation Electrification},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Gernandt, Hannes and Severino, Bernardo and Zhang, Xinyi and Mehrmann, Volker and Strunz, Kai},
year={2025},
pages={2897--2907}
}
References
- Electric Vehicle Power Transfer System Using a Three-Phase Capable Coupler (2018)
- Emadi, A., Khaligh, A., Rivetta, C. H. & Williamson, G. A. Constant Power Loads and Negative Impedance Instability in Automotive Systems: Definition, Modeling, Stability, and Control of Power Electronic Converters and Motor Drives. IEEE Transactions on Vehicular Technology vol. 55 1112–1125 (2006) – 10.1109/tvt.2006.877483
- Severino, B. & Strunz, K. Enhancing Transient Stability of DC Microgrid by Enlarging the Region of Attraction Through Nonlinear Polynomial Droop Control. IEEE Transactions on Circuits and Systems I: Regular Papers vol. 66 4388–4401 (2019) – 10.1109/tcsi.2019.2924169
- Blaabjerg, F., Teodorescu, R., Liserre, M. & Timbus, A. V. Overview of Control and Grid Synchronization for Distributed Power Generation Systems. IEEE Transactions on Industrial Electronics vol. 53 1398–1409 (2006) – 10.1109/tie.2006.881997
- Yazdani, A. & Iravani, R. Voltage‐Sourced Converters in Power Systems. (2010) doi:10.1002/9780470551578 – 10.1002/9780470551578
- Arancibia, A. & Strunz, K. Modeling of an electric vehicle charging station for fast DC charging. 2012 IEEE International Electric Vehicle Conference (2012) doi:10.1109/ievc.2012.6183232 – 10.1109/ievc.2012.6183232
- Mehrmann, V. & Unger, B. Control of port-Hamiltonian differential-algebraic systems and applications. Acta Numerica vol. 32 395–515 (2023) – 10.1017/s0962492922000083
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Schiffer, J. et al. A survey on modeling of microgrids—From fundamental physics to phasors and voltage sources. Automatica vol. 74 135–150 (2016) – 10.1016/j.automatica.2016.07.036
- Fiaz, S., Zonetti, D., Ortega, R., Scherpen, J. M. A. & van der Schaft, A. J. On port-Hamiltonian Modeling of the Synchronous Generator and Ultimate Boundedness of its solutions. IFAC Proceedings Volumes vol. 45 30–35 (2012) – 10.3182/20120829-3-it-4022.00042
- Fiaz, S., Zonetti, D., Ortega, R., Scherpen, J. M. A. & van der Schaft, A. J. A port-Hamiltonian approach to power network modeling and analysis. European Journal of Control vol. 19 477–485 (2013) – 10.1016/j.ejcon.2013.09.002
- Stegink, Energy-based analysis and control of power networks and markets: Port-Hamiltonian modeling, optimality and game theory. (2018)
- van der Schaft, A. & Stegink, T. Perspectives in modeling for control of power networks. Annual Reviews in Control vol. 41 119–132 (2016) – 10.1016/j.arcontrol.2016.04.017
- Bravo, M., Garces, A., Montoya, O. D. & Baier, C. R. Nonlinear Analysis for the Three-Phase PLL: A New Look for a Classical Problem. 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL) 1–6 (2018) doi:10.1109/compel.2018.8460081 – 10.1109/compel.2018.8460081
- Escobar, G., van der Schaft, A. J. & Ortega, R. A Hamiltonian viewpoint in the modeling of switching power converters. Automatica vol. 35 445–452 (1999) – 10.1016/s0005-1098(98)00196-4
- Strehle, F., Nahata, P., Malan, A. J., Hohmann, S. & Ferrari-Trecate, G. A Unified Passivity-Based Framework for Control of Modular Islanded AC Microgrids. IEEE Transactions on Control Systems Technology vol. 30 1960–1976 (2022) – 10.1109/tcst.2021.3136489
- Zhong, Q.-C. & Stefanello, M. A Port-Hamiltonian Control Framework to Render a Power Electronic System Passive. IEEE Transactions on Automatic Control vol. 67 1960–1965 (2022) – 10.1109/tac.2021.3069389
- Monshizadeh, P., Machado, J. E., Ortega, R. & van der Schaft, A. Power-controlled Hamiltonian systems: Application to electrical systems with constant power loads. Automatica vol. 109 108527 (2019) – 10.1016/j.automatica.2019.108527
- Meghnous, A. R., Pham, M. T. & Lin-Shi, X. Averaged port-Hamiltonian modeling based observer for DC-DC power converters. IFAC Proceedings Volumes vol. 46 827–832 (2013) – 10.3182/20130204-3-fr-2033.00199
- Kosaraju, K. C., Cucuzzella, M., Scherpen, J. M. A. & Pasumarthy, R. Differentiation and Passivity for Control of Brayton–Moser Systems. IEEE Transactions on Automatic Control vol. 66 1087–1101 (2021) – 10.1109/tac.2020.2994317
- van der Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer International Publishing, 2017). doi:10.1007/978-3-319-49992-5 – 10.1007/978-3-319-49992-5
- Mehrmann, V. & Morandin, R. Structure-preserving discretization for port-Hamiltonian descriptor systems. 2019 IEEE 58th Conference on Decision and Control (CDC) 6863–6868 (2019) doi:10.1109/cdc40024.2019.9030180 – 10.1109/cdc40024.2019.9030180
- Logemann, H. & Ryan, E. P. Ordinary Differential Equations. Springer Undergraduate Mathematics Series (Springer London, 2014). doi:10.1007/978-1-4471-6398-5 – 10.1007/978-1-4471-6398-5
- Achleitner, F., Arnold, A. & Mehrmann, V. Hypocoercivity and controllability in linear semi‐dissipative Hamiltonian ordinary differential equations and differential‐algebraic equations. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik vol. 103 (2021) – 10.1002/zamm.202100171
- Judge, P. D., Chaffey, G., Merlin, M. M. C., Clemow, P. R. & Green, T. C. Dimensioning and Modulation Index Selection for the Hybrid Modular Multilevel Converter. IEEE Transactions on Power Electronics vol. 33 3837–3851 (2018) – 10.1109/tpel.2017.2719103
- Kunkel, P. & Mehrmann, V. Differential-Algebraic Equations. EMS Textbooks in Mathematics (2006) doi:10.4171/017 – 10.4171/017
- Bertsekas, D. P. Nonlinear Programming. Journal of the Operational Research Society vol. 48 334–0334 (1997) – 10.1038/sj.jors.2600425
- Trentelman, H. L., Stoorvogel, A. A. & Hautus, M. Control Theory for Linear Systems. Communications and Control Engineering (Springer London, 2001). doi:10.1007/978-1-4471-0339-4 – 10.1007/978-1-4471-0339-4
- Restrepo, M., Morris, J., Kazerani, M. & Canizares, C. A. Modeling and Testing of a Bidirectional Smart Charger for Distribution System EV Integration. IEEE Transactions on Smart Grid vol. 9 152–162 (2018) – 10.1109/tsg.2016.2547178
- Arancibia, A., Strunz, K. & Mancilla-David, F. A Unified Single- and Three-Phase Control for Grid Connected Electric Vehicles. IEEE Transactions on Smart Grid vol. 4 1780–1790 (2013) – 10.1109/tsg.2013.2271096
- Cupelli, M., Zhu, L. & Monti, A. Why Ideal Constant Power Loads Are Not the Worst Case Condition From a Control Standpoint. IEEE Transactions on Smart Grid vol. 6 2596–2606 (2015) – 10.1109/tsg.2014.2361630
- Kundur, Power System Stability and Control (1994)