Trajectory tracking control of a class of underactuated port-controlled hamiltonian systems
Authors
Fernanda Ramos-García, Sofía Avila-Becerril, Gerardo Espinosa-Pérez
Abstract
No available
Citation
- Journal: International Journal of Control
- Year: 2025
- Volume:
- Issue:
- Pages: 1–14
- Publisher: Informa UK Limited
- DOI: 10.1080/00207179.2025.2532141
BibTeX
@article{Ramos_Garc_a_2025,
title={{Trajectory tracking control of a class of underactuated port-controlled hamiltonian systems}},
ISSN={1366-5820},
DOI={10.1080/00207179.2025.2532141},
journal={International Journal of Control},
publisher={Informa UK Limited},
author={Ramos-García, Fernanda and Avila-Becerril, Sofía and Espinosa-Pérez, Gerardo},
year={2025},
pages={1--14}
}
References
- Abd-Elhay, A.-E. R., Murtada, W. A. & Yosof, M. I. A high accuracy modeling scheme for dynamic systems: spacecraft reaction wheel model. J. Eng. Appl. Sci. 69, (2022) – 10.1186/s44147-021-00056-2
- Adamkowski, A. & Lewandowski, M. Experimental Examination of Unsteady Friction Models for Transient Pipe Flow Simulation. Journal of Fluids Engineering 128, 1351–1363 (2006) – 10.1115/1.2354521
- Arimoto, S. Control Theory of Non-linear Mechanical Systems. (1996) doi:10.1093/oso/9780198562917.001.0001 – 10.1093/oso/9780198562917.001.0001
- Bao J., Process control: The passive systems approach (2007)
- Bonnard, B. Quadratic control systems. Math. Control Signal Systems 4, 139–160 (1991) – 10.1007/bf02551263
- Chiasson, J. Modeling and High‐Performance Control of Electric Machines. (2005) doi:10.1002/0471722359 – 10.1002/0471722359
- IEEE Access. doi:10.1109/access.6287639 – 10.1109/access.6287639
- Ferguson, J., Donaire, A., Ortega, R. & Middleton, R. H. Matched disturbance rejection for energy-shaping controlled underactuated mechanical systems. 2017 IEEE 56th Annual Conference on Decision and Control (CDC) 1484–1489 (2017) doi:10.1109/cdc.2017.8263862 – 10.1109/cdc.2017.8263862
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica 39, 2059–2069 (2003) – 10.1016/j.automatica.2003.07.005
- Galindo Orozco, R. & Ngwompo, R. F. Passivity analysis and control of nonlinear systems modelled by bond graphs. International Journal of Control 96, 1775–1785 (2022) – 10.1080/00207179.2022.2070081
- Gantmacher F. R., Applications of the theory of matrices (2005)
- Gao, L., Mei, W., Kleeberger, M., Peng, H. & Fottner, J. Modeling and Discretization of Hydraulic Actuated Telescopic Boom System in Port-Hamiltonian Formulation. Proceedings of the 9th International Conference on Simulation and Modeling Methodologies, Technologies and Applications 69–79 (2019) doi:10.5220/0007832100690079 – 10.5220/0007832100690079
- Guerrero-Sánchez, M. E. et al. Robust IDA-PBC for under-actuated systems with inertia matrix dependent of the unactuated coordinates: application to a UAV carrying a load. Nonlinear Dyn 105, 3225–3238 (2021) – 10.1007/s11071-021-06776-7
- Guerrero-Sánchez, M. E., Montoya-Morales, J. R., Valencia-Palomo, G. & Hernández-González, O. Robust IDA-PBC for non-separable PCH systems under time-varying external disturbances. Nonlinear Dyn 113, 3499–3510 (2024) – 10.1007/s11071-024-10380-w
- Hatanaka, T., Chopra, N., Fujita, M. & Spong, M. W. Passivity-Based Control and Estimation in Networked Robotics. Communications and Control Engineering (Springer International Publishing, 2015). doi:10.1007/978-3-319-15171-7 – 10.1007/978-3-319-15171-7
- Hernández-Guzmán, V. M., Silva-Ortigoza, R. & Orrante-Sakanassi, J. A. Energy-Based Control of Electromechanical Systems. Advances in Industrial Control (Springer International Publishing, 2021). doi:10.1007/978-3-030-58786-4 – 10.1007/978-3-030-58786-4
- Hoang, N. H. et al. Trajectory tracking for nonlinear systems using extended quadratic port-Hamiltonian models without input and state coordinate transformations. Systems & Control Letters 167, 105325 (2022) – 10.1016/j.sysconle.2022.105325
- Javanmardi, N., Borja, P., Schaft, A. van der, Yazdanpanah, M. J. & Scherpen, J. Energy-Based Trajectory Tracking for Underactuated Mechanical Systems: Velocity-Free and Disturbance Rejection Methods. (2024) doi:10.22541/au.172448759.97334785/v1 – 10.22541/au.172448759.97334785/v1
- Jeltsema, D., Ortega, R. & M.A. Scherpen, J. An energy-balancing perspective of interconnection and damping assignment control of nonlinear systems. Automatica 40, 1643–1646 (2004) – 10.1016/j.automatica.2004.04.007
- Khalil H. K., Nonlinear systems (2002)
- Kundur P., Power system stability. Power System Stability and Control (2007)
- Li, C., Gao, Y., Lei, T., Li, R. Y. M. & Xu, Y. Two Independent Offset Controllers in a Three-Dimensional Chaotic System. Int. J. Bifurcation Chaos 34, (2024) – 10.1142/s0218127424500081
- Moon, S., Baik, J.-J. & Seo, J. M. Chaos synchronization in generalized Lorenz systems and an application to image encryption. Communications in Nonlinear Science and Numerical Simulation 96, 105708 (2021) – 10.1016/j.cnsns.2021.105708
- Nguyen, T. S., Hoang, N. H., Hussain, M. A. & Tan, C. K. Tracking-error control via the relaxing port-Hamiltonian formulation: Application to level control and batch polymerization reactor. Journal of Process Control 80, 152–166 (2019) – 10.1016/j.jprocont.2019.05.014
- Nicklasson, P. J., Ortega, R., Espinosa-Perez, G. & Jacobi, C. G. J. Passivity-based control of a class of Blondel-Park transformable electric machines. IEEE Trans. Automat. Contr. 42, 629–647 (1997) – 10.1109/9.580867
- International Journal of Robust and Nonlinear Control vol. 32 (2022) – 10.1002/rnc.v32.9
- Ortega, R., Romero, J. G., Borja, P. & Donaire, A. PID Passivity‐Based Control of Nonlinear Systems with Applications. (2021) doi:10.1002/9781119694199 – 10.1002/9781119694199
- Ortega R., Passivity-based control of Euler-Lagrange systems: Mechanical, electrical and electromechanical applications (2010)
- Ortega, R. & Spong, M. W. Adaptive motion control of rigid robots: A tutorial. Automatica 25, 877–888 (1989) – 10.1016/0005-1098(89)90054-x
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Trans. Automat. Contr. 53, 2527–2542 (2008) – 10.1109/tac.2008.2006930
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica 38, 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Pavlov, A. & Marconi, L. Incremental passivity and output regulation. Systems & Control Letters 57, 400–409 (2008) – 10.1016/j.sysconle.2007.10.008
- Perryman, R., Taylor, J. A. & Karney, B. Port-Hamiltonian based control of water distribution networks. Systems & Control Letters 170, 105402 (2022) – 10.1016/j.sysconle.2022.105402
- Redaud, J., Auriol, J. & Gorrec, Y. L. In domain dissipation assignment of boundary controlled Port-Hamiltonian systems using backstepping. Systems & Control Letters 185, 105722 (2024) – 10.1016/j.sysconle.2024.105722
- Reyes-Báez, R., van der Schaft, A. & Jayawardhana, B. Virtual contractivity-based control of fully-actuated mechanical systems in the port-Hamiltonian framework. Automatica 141, 110275 (2022) – 10.1016/j.automatica.2022.110275
- Sakata, N., Fujimoto, K. & Maruta, I. On trajectory tracking control of simple port-Hamiltonian systems based on passivity based sliding mode control. IFAC-PapersOnLine 54, 38–43 (2021) – 10.1016/j.ifacol.2021.11.052
- Sakata, N., Fujimoto, K. & Maruta, I. Passivity-Based Sliding Mode Control for Mechanical Port-Hamiltonian Systems. IEEE Trans. Automat. Contr. 69, 5605–5612 (2024) – 10.1109/tac.2024.3371898
- Sastry S., Nonlinear systems: Analysis, stability, and control (2013)
- Serra F., Passivity based control of STATCOMs (2014)
- Sirichotiyakul, W. & Satici, A. C. Data-driven passivity-based control of underactuated mechanical systems via interconnection and damping assignment. International Journal of Control 96, 1448–1456 (2022) – 10.1080/00207179.2022.2051750
- Song, Y., Zhao, K. & Ye, H. Control of Nonlinear Systems. (2024) doi:10.1201/9781003474364 – 10.1201/9781003474364
- Spindler, K. Optimal attitude control of a rigid body. Appl Math Optim 34, 79–90 (1996) – 10.1007/bf01182474
- Stancu, C., Hiti, S. & Biais, F. Maximum torque-per-ampere control of a saturated surface-mounted permanent magnet motor. 2002 IEEE 33rd Annual IEEE Power Electronics Specialists Conference. Proceedings (Cat. No.02CH37289) vol. 4 1667–1672 – 10.1109/psec.2002.1023050
- Turnwald, A., Schafer, M. & Liu, S. Passivity-Based Trajectory Tracking Control for an Autonomous Bicycle. IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society 2607–2612 (2018) doi:10.1109/iecon.2018.8591382 – 10.1109/iecon.2018.8591382
- van der Schaft, A. L2-Gain and Passivity Techniques in Nonlinear Control. Communications and Control Engineering (Springer International Publishing, 2017). doi:10.1007/978-3-319-49992-5 – 10.1007/978-3-319-49992-5
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. FnT in Systems and Control 1, 173–378 (2014) – 10.1561/2600000002
- Wang J.-L., Cooperative control of nonlinear multiagent systems: Passivity-based and non-passivity-based approaches (2021)
- Xu, D., He, X. & Su, H. Dynamic periodic event-triggered control for input-to-state stability of multilayer coupled systems. International Journal of Control 97, 439–449 (2022) – 10.1080/00207179.2022.2152380
- Xu, W., Ismail, M. M. & Islam, Md. R. Permanent Magnet Synchronous Machines and Drives. (2023) doi:10.1201/9781003320128 – 10.1201/9781003320128
- Yaghmaei, A. & Yazdanpanah, M. J. Trajectory tracking for a class of contractive port Hamiltonian systems. Automatica 83, 331–336 (2017) – 10.1016/j.automatica.2017.06.039
- Yaghmaei, A. & Yazdanpanah, M. J. On Contractive Port-Hamiltonian Systems With State-Modulated Interconnection and Damping Matrices. IEEE Trans. Automat. Contr. 69, 622–628 (2024) – 10.1109/tac.2023.3273394
- Yang, S.-K., Chen, C.-L. & Yau, H.-T. Control of chaos in Lorenz system. Chaos, Solitons & Fractals 13, 767–780 (2002) – 10.1016/s0960-0779(01)00052-2
- Zhang C., Port-hamiltonian modeling and jumping trajectory tracking control for a bio-inspired quadruped robot. Nonlinear Analysis: Hybrid Systems (2024)
- IEEE Transactions on Systems, Man, and Cybernetics: Systems. doi:10.1109/tsmc.6221021 – 10.1109/tsmc.6221021
- Zhou, W., Xu, Z., Wu, Y., Xiang, J. & Li, Y. Energy-based trajectory tracking control of under-actuated unmanned surface vessels. Ocean Engineering 288, 116166 (2023) – 10.1016/j.oceaneng.2023.116166