Trajectory tracking for nonlinear systems using extended quadratic port-Hamiltonian models without input and state coordinate transformations
Authors
N.H. Hoang, T.S. Nguyen, T.K.P. Le, T.T.H. Phan, M.A. Hussain, D. Dochain
Abstract
In this note, an enhanced trajectory tracking (or equivalently, tracking-error) approach is developed for the control of nonlinear systems whenever the stage of feedback passivation design prior to synthesizing state feedback controllers is impossible. To achieve this purpose while using the original state vector to retain its interpretation, it is possible without the use of input and state coordinate transformations to combine the system dynamics with the so-called extended quadratic port-Hamiltonian (PH) models (including possibly the quadratic pseudo PH models) which are then divided into non-relaxing and relaxing ones for further study on control benefits. Interestingly, both cases are associated to a unifying quadratic Hamiltonian storage function similar to that of electrical, mechanical, or electromechanical systems with a specific insight. Sufficient conditions for the global asymptotic or exponential convergence of the system trajectory to the reference one are shown. In addition, a Proportional–Integral action can be added to the tracking control for improving the closed-loop performance and robustness. The proposed approach is illustrated via two case studies, including the non-minimum phase Van de Vusse reaction system and the 3-DOF SCARA robot.
Keywords
Quadratic port-Hamiltonian systems; Tracking control; Proportional–Integral control; Nonlinear systems
Citation
- Journal: Systems & Control Letters
- Year: 2022
- Volume: 167
- Issue:
- Pages: 105325
- Publisher: Elsevier BV
- DOI: 10.1016/j.sysconle.2022.105325
BibTeX
@article{Hoang_2022,
title={{Trajectory tracking for nonlinear systems using extended quadratic port-Hamiltonian models without input and state coordinate transformations}},
volume={167},
ISSN={0167-6911},
DOI={10.1016/j.sysconle.2022.105325},
journal={Systems & Control Letters},
publisher={Elsevier BV},
author={Hoang, N.H. and Nguyen, T.S. and Le, T.K.P. and Phan, T.T.H. and Hussain, M.A. and Dochain, D.},
year={2022},
pages={105325}
}
References
- Strogatz, (2015)
- Glansdorff, (1971)
- Aström, K. J. & Murray, R. M. Feedback Systems. (2008) doi:10.1515/9781400828739 – 10.1515/9781400828739
- Mayne, D. Q. Model predictive control: Recent developments and future promise. Automatica vol. 50 2967–2986 (2014) – 10.1016/j.automatica.2014.10.128
- Guay, M. & Dochain, D. A time-varying extremum-seeking control approach. Automatica vol. 51 356–363 (2015) – 10.1016/j.automatica.2014.10.078
- Van der Schaft, (2017)
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Ortega, R., Jeltsema, D. & Scherpen, J. M. A. Power shaping: A new paradigm for stabilization of nonlinear RLC circuits. IEEE Transactions on Automatic Control vol. 48 1762–1767 (2003) – 10.1109/tac.2003.817918
- Alonso, A. A. & Ydstie, B. E. Stabilization of distributed systems using irreversible thermodynamics. Automatica vol. 37 1739–1755 (2001) – 10.1016/s0005-1098(01)00140-6
- Ramírez, H., Le Gorrec, Y., Maschke, B. & Couenne, F. On the passivity based control of irreversible processes: A port-Hamiltonian approach. Automatica vol. 64 105–111 (2016) – 10.1016/j.automatica.2015.07.002
- Isidori, (2013)
- Khalil, (2002)
- Byrnes, C. I., Isidori, A. & Willems, J. C. Passivity, feedback equivalence, and the global stabilization of minimum phase nonlinear systems. IEEE Transactions on Automatic Control vol. 36 1228–1240 (1991) – 10.1109/9.100932
- Larsen, M., Janković, M. & Kokotović, P. V. Coordinated passivation designs. Automatica vol. 39 335–341 (2003) – 10.1016/s0005-1098(02)00237-6
- Sira-Ramirez, H. & Angulo-Nunez, M. I. Passivity-based control of nonlinear chemical processes. International Journal of Control vol. 68 971–996 (1997) – 10.1080/002071797223163
- Sira-Ramirez, H. A general canonical form for feedback passivity of nonlinear systems. International Journal of Control vol. 71 891–905 (1998) – 10.1080/002071798221623
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica vol. 39 2059–2069 (2003) – 10.1016/j.automatica.2003.07.005
- Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute vol. 329 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
- Maschke, B., Ortega, R. & Van Der Schaft, A. J. Energy-based Lyapunov functions for forced Hamiltonian systems with dissipation. IEEE Transactions on Automatic Control vol. 45 1498–1502 (2000) – 10.1109/9.871758
- Monshizadeh, N., Monshizadeh, P., Ortega, R. & van der Schaft, A. Conditions on shifted passivity of port-Hamiltonian systems. Systems & Control Letters vol. 123 55–61 (2019) – 10.1016/j.sysconle.2018.10.010
- Wang, Y., Li, C. & Cheng, D. Generalized Hamiltonian realization of time-invariant nonlinear systems. Automatica vol. 39 1437–1443 (2003) – 10.1016/s0005-1098(03)00132-8
- Farschman, C. A., Viswanath, K. P. & Erik Ydstie, B. Process systems and inventory control. AIChE Journal vol. 44 1841–1857 (1998) – 10.1002/aic.690440814
- Hoang, N. H. & Ydstie, B. E. Integration of inventory control into the port‐Hamiltonian framework for dissipative stabilization of chemical reactors. Asian Journal of Control vol. 24 2490–2504 (2022) – 10.1002/asjc.2668
- Antonelli, R. & Astolfi, A. Continuous stirred tank reactors: easy to stabilise? Automatica vol. 39 1817–1827 (2003) – 10.1016/s0005-1098(03)00177-8
- Ramírez, H., Sbarbaro, D. & Ortega, R. On the control of non-linear processes: An IDA–PBC approach. Journal of Process Control vol. 19 405–414 (2009) – 10.1016/j.jprocont.2008.06.018
- Batlle, C., Ortega, R., Sbarbaro, D. & Ramírez, H. Corrigendum to “On the control of non-linear processes: An IDA-PBC approach” (H. Ramírez et al., Journal of Process Control 19 (1) (2009) 405–414). Journal of Process Control vol. 20 121–122 (2010) – 10.1016/j.jprocont.2009.09.009
- Nguyen, T. S., Hoang, N. H. & Azlan Hussain, M. Feedback passivation plus tracking-error-based multivariable control for a class of free-radical polymerisation reactors. International Journal of Control vol. 92 1970–1984 (2018) – 10.1080/00207179.2017.1423393
- Nguyen, T. S., Tan, C. K., Hoang, N. H. & Hussain, M. A. Tracking-error-based control of a chemical reactor using decoupled dynamic variables. IFAC-PapersOnLine vol. 52 74–79 (2019) – 10.1016/j.ifacol.2019.07.013
- Nguyen, T. S., Hoang, N. H. & Hussain, M. A. Tracking error plus damping injection control of non-minimum phase processes. IFAC-PapersOnLine vol. 51 643–648 (2018) – 10.1016/j.ifacol.2018.09.351
- Nguyen, T. S., Hoang, N. H., Hussain, M. A. & Tan, C. K. Tracking-error control via the relaxing port-Hamiltonian formulation: Application to level control and batch polymerization reactor. Journal of Process Control vol. 80 152–166 (2019) – 10.1016/j.jprocont.2019.05.014
- Yaghmaei, A. & Yazdanpanah, M. J. Trajectory tracking for a class of contractive port Hamiltonian systems. Automatica vol. 83 331–336 (2017) – 10.1016/j.automatica.2017.06.039
- Stadlmayr, R., Schoberl, M. & Schlacher, K. A combination of feedforward and feedback for the control of the nonlinear benchmark Inertia Wheel Pendulum. 2007 European Control Conference (ECC) 5802–5808 (2007) doi:10.23919/ecc.2007.7068753 – 10.23919/ecc.2007.7068753
- Schöberl, M. & Schlacher, K. On an intrinsic formulation of time-variant Port Hamiltonian systems. Automatica vol. 48 2194–2200 (2012) – 10.1016/j.automatica.2012.06.014
- Jeltsema, D. & Scherpen, J. M. A. A dual relation between port-Hamiltonian systems and the Brayton–Moser equations for nonlinear switched RLC circuits. Automatica vol. 39 969–979 (2003) – 10.1016/s0005-1098(03)00070-0
- Favache, A., Dochain, D. & Winkin, J. J. Power-shaping control: Writing the system dynamics into the Brayton–Moser form. Systems & Control Letters vol. 60 618–624 (2011) – 10.1016/j.sysconle.2011.04.021
- Guay, M. & Hudon, N. Stabilization of Nonlinear Systems via Potential-Based Realization. IEEE Transactions on Automatic Control vol. 61 1075–1080 (2016) – 10.1109/tac.2015.2455671
- Dörfler, F., Johnsen, J. K. & Allgöwer, F. An introduction to interconnection and damping assignment passivity-based control in process engineering. Journal of Process Control vol. 19 1413–1426 (2009) – 10.1016/j.jprocont.2009.07.015
- Hoang, N. H., Mai, T. P. & Dochain, D. On the relaxing dissipation of dissipative pseudo Hamiltonian models. IFAC-PapersOnLine vol. 48 1051–1056 (2015) – 10.1016/j.ifacol.2015.09.107
- Ramirez, H., Maschke, B. & Sbarbaro, D. Irreversible port-Hamiltonian systems: A general formulation of irreversible processes with application to the CSTR. Chemical Engineering Science vol. 89 223–234 (2013) – 10.1016/j.ces.2012.12.002
- Ha Hoang, N., Couenne, F., Le Gorrec, Y., Chen, C. L. & Ydstie, B. E. Passivity-based nonlinear control of CSTR via asymptotic observers. Annual Reviews in Control vol. 37 278–288 (2013) – 10.1016/j.arcontrol.2013.09.007
- Olsson, H., Åström, K. J., Canudas de Wit, C., Gäfvert, M. & Lischinsky, P. Friction Models and Friction Compensation. European Journal of Control vol. 4 176–195 (1998) – 10.1016/s0947-3580(98)70113-x
- Olsson, H. & Astrom, K. J. Friction generated limit cycles. IEEE Transactions on Control Systems Technology vol. 9 629–636 (2001) – 10.1109/87.930974
- Pham, Systems without equilibrium. (2017)
- Edgar, (2007)
- Nguyen, T. S., Tan, C. K., Hoang, N. H., Hussain, M. A. & Bonvin, D. A perturbed Port-Hamiltonian approach for the stabilization of homogeneous reaction systems via the control of vessel extents. Computers & Chemical Engineering vol. 154 107458 (2021) – 10.1016/j.compchemeng.2021.107458
- Reyes-Báez, R., van der Schaft, A. & Jayawardhana, B. Tracking Control of Fully-actuated port-Hamiltonian Mechanical Systems via Sliding Manifolds and Contraction Analysis. IFAC-PapersOnLine vol. 50 8256–8261 (2017) – 10.1016/j.ifacol.2017.08.1395
- Reyes-Báez, (2019)
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3