On Contractive Port-Hamiltonian Systems With State-Modulated Interconnection and Damping Matrices
Authors
Abolfazl Yaghmaei, Mohammad Javad Yazdanpanah
Abstract
In this article, for the input-state-output class of port-Hamiltonian systems, the contraction property is characterized. Recently, some results on contraction of port-Hamiltonian systems with constant interconnection and damping matrices have been published. This article extends these results for state-modulated interconnection and damping matrices. In this regard, the powerful method of interconnection and damping assignment passivity-based control is extended for tracking designs. Controller design for underactuated mechanical systems with nonconstant mass matrices usually leads to nonconstant (state-modulated) interconnection and damping matrices for the closed-loop system. Therefore, the result of this article can be used for tracking controller design for underactuated mechanical systems. To show the potency of proposed results, a tracking controller for cart–pole system is designed and simulated.
Citation
- Journal: IEEE Transactions on Automatic Control
- Year: 2024
- Volume: 69
- Issue: 1
- Pages: 622–628
- Publisher: Institute of Electrical and Electronics Engineers (IEEE)
- DOI: 10.1109/tac.2023.3273394
BibTeX
@article{Yaghmaei_2024,
title={{On Contractive Port-Hamiltonian Systems With State-Modulated Interconnection and Damping Matrices}},
volume={69},
ISSN={2334-3303},
DOI={10.1109/tac.2023.3273394},
number={1},
journal={IEEE Transactions on Automatic Control},
publisher={Institute of Electrical and Electronics Engineers (IEEE)},
author={Yaghmaei, Abolfazl and Yazdanpanah, Mohammad Javad},
year={2024},
pages={622--628}
}
References
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Ortega. Eur. J. Control (2004)
- Fujimoto, K., Sakurama, K. & Sugie, T. Trajectory tracking control of port-controlled Hamiltonian systems via generalized canonical transformations. Automatica vol. 39 2059–2069 (2003) – 10.1016/j.automatica.2003.07.005
- Yaghmaei, A. & Yazdanpanah, M. J. Trajectory tracking for a class of contractive port Hamiltonian systems. Automatica vol. 83 331–336 (2017) – 10.1016/j.automatica.2017.06.039
- Yaghmaei, A. & Yazdanpanah, M. J. Structure Preserving Observer Design for Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 64 1214–1220 (2019) – 10.1109/tac.2018.2847904
- Barabanov. Syst. Control Lett. (2019)
- LOHMILLER, W. & SLOTINE, J.-J. E. On Contraction Analysis for Non-linear Systems. Automatica vol. 34 683–696 (1998) – 10.1016/s0005-1098(98)00019-3
- Wang, W. & Slotine, J.-J. E. On partial contraction analysis for coupled nonlinear oscillators. Biological Cybernetics vol. 92 38–53 (2004) – 10.1007/s00422-004-0527-x
- Lancaster, P. & Rodman, L. Algebraic Riccati Equations. (1995) doi:10.1093/oso/9780198537953.001.0001 – 10.1093/oso/9780198537953.001.0001
- Abou-Kandil. Matrix Riccati Equ. in Control and Syst. Theory (2012)
- Bernstein, D. S. Matrix Mathematics. (2009) doi:10.1515/9781400833344 – 10.1515/9781400833344
- Acosta, J. A., Ortega, R., Astolfi, A. & Mahindrakar, A. D. Interconnection and damping assignment passivity-based control of mechanical systems with underactuation degree one. IEEE Transactions on Automatic Control vol. 50 1936–1955 (2005) – 10.1109/tac.2005.860292