In domain dissipation assignment of boundary controlled Port-Hamiltonian systems using backstepping
Authors
Jeanne Redaud, Jean Auriol, Yann Le Gorrec
Abstract
In this paper, we develop a systematic approach to stabilize a general class of hyperbolic systems while assigning them a specified closed-loop behavior with a clear energy interpretation. More precisely, we address in-domain dissipation assignment for boundary-controlled Port Hamiltonian systems. The controller is designed so that the closed-loop system behaves like a target system with a specified energy decay rate. The PHS framework is used to take advantage of the natural physical properties of the system to define well-posed, exponentially stable, and easily parametrizable target system candidates, thus resulting in modular controllers. Under some generic structural assumptions, we rewrite the considered Port Hamiltonian system in the Riemann coordinates. The control approach is then based on the backstepping methodology. We combine classical Volterra transformations with an innovative time-affine transform to map the original system to the desired target system. The proposed approach is applied to two test cases: a clamped string and a clamped Timoshenko beam. Both are illustrated in numerical simulations.
Keywords
Backstepping-based control design; Hyperbolic PDE systems; Distributed parameter systems; Port-hamiltonian systems
Citation
- Journal: Systems & Control Letters
- Year: 2024
- Volume: 185
- Issue:
- Pages: 105722
- Publisher: Elsevier BV
- DOI: 10.1016/j.sysconle.2024.105722
BibTeX
@article{Redaud_2024,
title={{In domain dissipation assignment of boundary controlled Port-Hamiltonian systems using backstepping}},
volume={185},
ISSN={0167-6911},
DOI={10.1016/j.sysconle.2024.105722},
journal={Systems & Control Letters},
publisher={Elsevier BV},
author={Redaud, Jeanne and Auriol, Jean and Gorrec, Yann Le},
year={2024},
pages={105722}
}
References
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Le Gorrec, A semigroup approach to Port Hamiltonian systems associated with linear skew symmetric operator. (2004)
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Villegas, (2007)
- Duindam, (2009)
- Serban, Modelling and control of fluid power systems using the port-Hamiltonian approach. Int. J. Fluid Power (2011)
- van der Schaft, Port-Hamiltonian formulation of distributed parameter systems: Convective transport and phase transitions. J. Math. Anal. Appl. (2002)
- Wu, Port-Hamiltonian modeling and control of beam vibration. Mech. Syst. Signal Process. (2017)
- Dunn, Optimization-based design of a high-performance hybrid vehicle powertrain using the port-Hamiltonian framework. IEEE Trans. Control Syst. Technol. (2016)
- Augner, B. & Jacob, B. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations & Control Theory vol. 3 207–229 (2014) – 10.3934/eect.2014.3.207
- Bagherpour, Stability and energy-preserving boundary control of flexible mechanical systems with distributed parameters using the port-Hamiltonian approach. IEEE Trans. Control Syst. Technol. (2015)
- Ortega, R., van der Schaft, A., Castanos, F. & Astolfi, A. Control by Interconnection and Standard Passivity-Based Control of Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 53 2527–2542 (2008) – 10.1109/tac.2008.2006930
- Macchelli, A., Le Gorrec, Y., Ramirez, H. & Zwart, H. On the Synthesis of Boundary Control Laws for Distributed Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 62 1700–1713 (2017) – 10.1109/tac.2016.2595263
- Zwart, H., Le Gorrec, Y., Maschke, B. & Villegas, J. Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain. ESAIM: Control, Optimisation and Calculus of Variations vol. 16 1077–1093 (2009) – 10.1051/cocv/2009036
- Macchelli, A., Le Gorrec, Y. & Ramirez, H. Exponential Stabilization of Port-Hamiltonian Boundary Control Systems via Energy Shaping. IEEE Transactions on Automatic Control vol. 65 4440–4447 (2020) – 10.1109/tac.2020.3004798
- Krstic, (2008)
- Anfinsen, H. & Aamo, O. M. Adaptive Output Feedback Stabilization of $n + m$ Coupled Linear Hyperbolic PDEs with Uncertain Boundary Conditions. SIAM Journal on Control and Optimization vol. 55 3928–3946 (2017) – 10.1137/16m1099662
- Wang, J., Pi, Y. & Krstic, M. Balancing and suppression of oscillations of tension and cage in dual-cable mining elevators. Automatica vol. 98 223–238 (2018) – 10.1016/j.automatica.2018.09.027
- Redaud, J., Auriol, J. & Niculescu, S.-I. Output-feedback control of an underactuated network of interconnected hyperbolic PDE–ODE systems. Systems & Control Letters vol. 154 104984 (2021) – 10.1016/j.sysconle.2021.104984
- Bou Saba, D., Bribiesca-Argomedo, F., Auriol, J., Di Loreto, M. & Di Meglio, F. Stability Analysis for a Class of Linear $2 imes 2$ Hyperbolic PDEs Using a Backstepping Transform. IEEE Transactions on Automatic Control vol. 65 2941–2956 (2020) – 10.1109/tac.2019.2934384
- Li, T. & Rao, B. Strong (weak) exact controllability and strong (weak) exact observability for quasilinear hyperbolic systems. Chinese Annals of Mathematics, Series B vol. 31 723–742 (2010) – 10.1007/s11401-010-0600-9
- Coron, J.-M., Hu, L. & Olive, G. Finite-time boundary stabilization of general linear hyperbolic balance laws via Fredholm backstepping transformation. Automatica vol. 84 95–100 (2017) – 10.1016/j.automatica.2017.05.013
- Auriol, J. & Di Meglio, F. An explicit mapping from linear first order hyperbolic PDEs to difference systems. Systems & Control Letters vol. 123 144–150 (2019) – 10.1016/j.sysconle.2018.11.012
- Logemann, H., Rebarber, R. & Weiss, G. Conditions for Robustness and Nonrobustness of the Stability of Feedback Systems with Respect to Small Delays in the Feedback Loop. SIAM Journal on Control and Optimization vol. 34 572–600 (1996) – 10.1137/s0363012993250700
- Auriol, J. & Di Meglio, F. Robust output feedback stabilization for two heterodirectional linear coupled hyperbolic PDEs. Automatica vol. 115 108896 (2020) – 10.1016/j.automatica.2020.108896
- Chen, Rapid stabilization of Timoshenko beam by PDE backstepping. IEEE Trans. Automat. Control (2023)
- Chen, G., Vazquez, R. & Krstic, M. Backstepping-based Rapid Stabilization of Two-layer Timoshenko Composite Beams. IFAC-PapersOnLine vol. 56 8159–8164 (2023) – 10.1016/j.ifacol.2023.10.992
- Wei, C. & Li, J. Prescribed-time stabilization of uncertain heat equation via boundary time-varying feedback and disturbance estimator. Systems & Control Letters vol. 171 105419 (2023) – 10.1016/j.sysconle.2022.105419
- Steeves, Input delay compensation in prescribed-time of boundary-actuated reaction-diffusion PDEs. (2021)
- Espitia, N., Polyakov, A., Efimov, D. & Perruquetti, W. Boundary time-varying feedbacks for fixed-time stabilization of constant-parameter reaction–diffusion systems. Automatica vol. 103 398–407 (2019) – 10.1016/j.automatica.2019.02.013
- Ramirez, On backstepping boundary control for a class of linear port-Hamiltonian systems. (2017)
- Trang VU, N. M., LEFÈVRE, L. & NOUAILLETAS, R. Distributed and backstepping boundary controls to achieve IDA-PBC design. IFAC-PapersOnLine vol. 48 482–487 (2015) – 10.1016/j.ifacol.2015.05.034
- Redaud, J., Auriol, J. & Gorrec, Y. L. Distributed Damping Assignment for a Wave Equation in the Port-Hamiltonian Framework. IFAC-PapersOnLine vol. 55 155–161 (2022) – 10.1016/j.ifacol.2022.10.393
- Redaud, In-domain damping assignment of a Timoshenko beam using state feedback boundary control. (2022)
- Hu, L., Vazquez, R., Meglio, F. D. & Krstic, M. Boundary Exponential Stabilization of 1-Dimensional Inhomogeneous Quasi-Linear Hyperbolic Systems. SIAM Journal on Control and Optimization vol. 57 963–998 (2019) – 10.1137/15m1012712
- Bastin, (2016)
- Auriol, J. & Di Meglio, F. Minimum time control of heterodirectional linear coupled hyperbolic PDEs. Automatica vol. 71 300–307 (2016) – 10.1016/j.automatica.2016.05.030
- Jacob, (2012)
- Curtain, (2012)
- Coron, J.-M., Vazquez, R., Krstic, M. & Bastin, G. Local Exponential $H^2$ Stabilization of a $2 imes2$ Quasilinear Hyperbolic System Using Backstepping. SIAM Journal on Control and Optimization vol. 51 2005–2035 (2013) – 10.1137/120875739
- Mattioni, A Lyapunov approach for the exponential stability of a damped Timoshenko beam. IEEE Trans. Automat. Control (2023)
- Lamare, Robust output regulation of 2×2 hyperbolic systems: Control law and input-to-state stability. (2018)
- Auriol, J., Aarsnes, U. J. F., Martin, P. & Meglio, F. D. Delay-Robust Control Design for Two Heterodirectional Linear Coupled Hyperbolic PDEs. IEEE Transactions on Automatic Control vol. 63 3551–3557 (2018) – 10.1109/tac.2018.2798818
- Auriol, J., Bribiesca Argomedo, F. & Di Meglio, F. Robustification of stabilizing controllers for ODE-PDE-ODE systems: A filtering approach. Automatica vol. 147 110724 (2023) – 10.1016/j.automatica.2022.110724
- Di Meglio, F., Argomedo, F. B., Hu, L. & Krstic, M. Stabilization of coupled linear heterodirectional hyperbolic PDE–ODE systems. Automatica vol. 87 281–289 (2018) – 10.1016/j.automatica.2017.09.027
- LeVeque, (2002)
- Wu, Optimal actuator location for electro-active polymer actuated endoscope. (2018)
- Timoshenko, (1974)