The collective dynamics of a stochastic Port-Hamiltonian self-driven agent model in one dimension
Authors
Matthias Ehrhardt, Thomas Kruse, Antoine Tordeux
Abstract
This paper studies the collective motion of self-driven agents in a one-dimensional space with periodic boundaries, using a stochastic Port-Hamiltonian system (PHS) with symmetric nearest-neighbor interactions and additive Brownian noise as an external input. In the case of a quadratic potential the PHS is an Ornstein-Uhlenbeck process for which we explicitly determine the distribution for any time
Citation
- Journal: ESAIM: Mathematical Modelling and Numerical Analysis
- Year: 2024
- Volume: 58
- Issue: 2
- Pages: 515–544
- Publisher: EDP Sciences
- DOI: 10.1051/m2an/2024004
BibTeX
@article{Ehrhardt_2024,
title={{The collective dynamics of a stochastic Port-Hamiltonian self-driven agent model in one dimension}},
volume={58},
ISSN={2804-7214},
DOI={10.1051/m2an/2024004},
number={2},
journal={ESAIM: Mathematical Modelling and Numerical Analysis},
publisher={EDP Sciences},
author={Ehrhardt, Matthias and Kruse, Thomas and Tordeux, Antoine},
year={2024},
pages={515--544}
}
References
- Acebrón, J. A., Bonilla, L. L., Pérez Vicente, C. J., Ritort, F. & Spigler, R. The Kuramoto model: A simple paradigm for synchronization phenomena. Reviews of Modern Physics vol. 77 137–185 (2005) – 10.1103/revmodphys.77.137
- Ballerini, M. et al. Interaction ruling animal collective behavior depends on topological rather than metric distance: Evidence from a field study. Proceedings of the National Academy of Sciences vol. 105 1232–1237 (2008) – 10.1073/pnas.0711437105
- Barberis, L. & Peruani, F. Phase separation and emergence of collective motion in a one-dimensional system of active particles. The Journal of Chemical Physics vol. 150 (2019) – 10.1063/1.5085840
- Carlitz, L. Some theorems on Bernoulli numbers of higher order. Pacific Journal of Mathematics vol. 2 127–139 (1952) – 10.2140/pjm.1952.2.127
- Chandler, R. E., Herman, R. & Montroll, E. W. Traffic Dynamics: Studies in Car Following. Operations Research vol. 6 165–184 (1958) – 10.1287/opre.6.2.165
- Chaté, H., Ginelli, F., Grégoire, G., Peruani, F. & Raynaud, F. Modeling collective motion: variations on the Vicsek model. The European Physical Journal B vol. 64 451–456 (2008) – 10.1140/epjb/e2008-00275-9
- Ciuffo, B. et al. Requiem on the positive effects of commercial adaptive cruise control on motorway traffic and recommendations for future automated driving systems. Transportation Research Part C: Emerging Technologies vol. 130 103305 (2021) – 10.1016/j.trc.2021.103305
- Cordoni, F., Di Persio, L. & Muradore, R. Stabilization of bilateral teleoperators with asymmetric stochastic delay. Systems & Control Letters vol. 147 104828 (2021) – 10.1016/j.sysconle.2020.104828
- Cordoni, F., Di Persio, L. & Muradore, R. Stochastic Port-Hamiltonian Systems. Journal of Nonlinear Science vol. 32 (2022) – 10.1007/s00332-022-09853-2
- Cvijović, D. & Srivastava, H. M. Closed-form summation of the Dowker and related sums. Journal of Mathematical Physics vol. 48 (2007) – 10.1063/1.2712895
- Cvijović, D. & Srivastava, H. M. Closed-form summations of Dowker’s and related trigonometric sums. Journal of Physics A: Mathematical and Theoretical vol. 45 374015 (2012) – 10.1088/1751-8113/45/37/374015
- Czirók, A., Barabási, A.-L. & Vicsek, T. Collective Motion of Self-Propelled Particles: Kinetic Phase Transition in One Dimension. Physical Review Letters vol. 82 209–212 (1999) – 10.1103/physrevlett.82.209
- da, F., Carlos, Glasser, L., M. & Kowalenko, V. Generalized cosecant numbers and trigonometric inverse power sums. Applicable Analysis and Discrete Mathematics vol. 12 70–109 (2018) – 10.2298/aadm1801070f
- De, R. & Chakraborty, D. Collective motion: Influence of local behavioural interactions among individuals. Journal of Biosciences vol. 47 (2022) – 10.1007/s12038-022-00277-4
- DEGOND, P., DIMARCO, G. & MAC, T. B. N. HYDRODYNAMICS OF THE KURAMOTO–VICSEK MODEL OF ROTATING SELF-PROPELLED PARTICLES. Mathematical Models and Methods in Applied Sciences vol. 24 277–325 (2013) – 10.1142/s0218202513400095
- Dowker, J. S. Casimir effect around a cone. Physical Review D vol. 36 3095–3101 (1987) – 10.1103/physrevd.36.3095
- Dowker, J. S. Heat kernel expansion on a generalized cone. Journal of Mathematical Physics vol. 30 770–773 (1989) – 10.1063/1.528395
- Dowker, J. S. On Verlinde’s formula for the dimensions of vector bundles on moduli spaces. Journal of Physics A: Mathematical and General vol. 25 2641–2648 (1992) – 10.1088/0305-4470/25/9/033
- Fang, Z. & Gao, C. Stabilization of Input-Disturbed Stochastic Port-Hamiltonian Systems Via Passivity. IEEE Transactions on Automatic Control vol. 62 4159–4166 (2017) – 10.1109/tac.2017.2676619
- Fong C.K., Course Notes in Linear Algebra, MATH 2107, February (2008).
- Gardiner C.W., Handbook of Stochastic Methods, Vol. 3. Springer Berlin (1985).
- Gautrais, J. et al. Deciphering Interactions in Moving Animal Groups. PLoS Computational Biology vol. 8 e1002678 (2012) – 10.1371/journal.pcbi.1002678
- Gazis, D. C., Herman, R. & Rothery, R. W. Nonlinear Follow-the-Leader Models of Traffic Flow. Operations Research vol. 9 545–567 (1961) – 10.1287/opre.9.4.545
- Großmann, R., Aranson, I. S. & Peruani, F. A particle-field approach bridges phase separation and collective motion in active matter. Nature Communications vol. 11 (2020) – 10.1038/s41467-020-18978-5
- Gunter, G. et al. Are Commercially Implemented Adaptive Cruise Control Systems String Stable? IEEE Transactions on Intelligent Transportation Systems vol. 22 6992–7003 (2021) – 10.1109/tits.2020.3000682
- Herman, R., Montroll, E. W., Potts, R. B. & Rothery, R. W. Traffic Dynamics: Analysis of Stability in Car Following. Operations Research vol. 7 86–106 (1959) – 10.1287/opre.7.1.86
- Keta, Y.-E., Jack, R. L. & Berthier, L. Disordered Collective Motion in Dense Assemblies of Persistent Particles. Physical Review Letters vol. 129 (2022) – 10.1103/physrevlett.129.048002
- Khound, P., Will, P., Tordeux, A. & Gronwald, F. Extending the adaptive time gap car-following model to enhance local and string stability for adaptive cruise control systems. Journal of Intelligent Transportation Systems vol. 27 36–56 (2021) – 10.1080/15472450.2021.1983810
- Lamoline, F. & Winkin, J. J. On stochastic port-hamiltonian systems with boundary control and observation. 2017 IEEE 56th Annual Conference on Decision and Control (CDC) 2492–2497 (2017) doi:10.1109/cdc.2017.8264015 – 10.1109/cdc.2017.8264015
- Lamoline F. and Hastir A., On Dirac structure of infinite-dimensional stochastic port-Hamiltonian systems. Preprint: arXiv:2210.06358 (2022).
- Makridis, M., Mattas, K., Anesiadou, A. & Ciuffo, B. OpenACC. An open database of car-following experiments to study the properties of commercial ACC systems. Transportation Research Part C: Emerging Technologies vol. 125 103047 (2021) – 10.1016/j.trc.2021.103047
- Marchetti, M. C. et al. Hydrodynamics of soft active matter. Reviews of Modern Physics vol. 85 1143–1189 (2013) – 10.1103/revmodphys.85.1143
- Marrocco, A. Numerical simulation of chemotactic bacteria aggregation via mixed finite elements. ESAIM: Mathematical Modelling and Numerical Analysis vol. 37 617–630 (2003) – 10.1051/m2an:2003048
- Martin, D. et al. Fluctuation-Induced Phase Separation in Metric and Topological Models of Collective Motion. Physical Review Letters vol. 126 (2021) – 10.1103/physrevlett.126.148001
- Maury, B. & Venel, J. A discrete contact model for crowd motion. ESAIM: Mathematical Modelling and Numerical Analysis vol. 45 145–168 (2010) – 10.1051/m2an/2010035
- Moreno, J. C., Rubio Puzzo, M. L. & Paul, W. Collective dynamics of pedestrians in a corridor: An approach combining social force and Vicsek models. Physical Review E vol. 102 (2020) – 10.1103/physreve.102.022307
- Nemoto, T., Fodor, É., Cates, M. E., Jack, R. L. & Tailleur, J. Optimizing active work: Dynamical phase transitions, collective motion, and jamming. Physical Review E vol. 99 (2019) – 10.1103/physreve.99.022605
- Pavliotis, G. A. Stochastic Processes and Applications. Texts in Applied Mathematics (Springer New York, 2014). doi:10.1007/978-1-4939-1323-7 – 10.1007/978-1-4939-1323-7
- Pipes, L. A. An Operational Analysis of Traffic Dynamics. Journal of Applied Physics vol. 24 274–281 (1953) – 10.1063/1.1721265
- Ramaswamy, S. Active matter. Journal of Statistical Mechanics: Theory and Experiment vol. 2017 054002 (2017) – 10.1088/1742-5468/aa6bc5
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information vol. 37 1400–1422 (2020) – 10.1093/imamci/dnaa018
- Rüdiger B., Tordeux A. and Ugurcan B., Stability analysis of a stochastic port-Hamiltonian car-following model. Preprint: arXiv:2212.05139 (2022).
- Satoh, S. Input‐to‐state stability of stochastic port‐Hamiltonian systems using stochastic generalized canonical transformations. International Journal of Robust and Nonlinear Control vol. 27 3862–3885 (2017) – 10.1002/rnc.3769
- Satoh, S. & Fujimoto, K. Passivity Based Control of Stochastic Port-Hamiltonian Systems. IEEE Transactions on Automatic Control vol. 58 1139–1153 (2013) – 10.1109/tac.2012.2229791
- Shaebani, M. R., Wysocki, A., Winkler, R. G., Gompper, G. & Rieger, H. Computational models for active matter. Nature Reviews Physics vol. 2 181–199 (2020) – 10.1038/s42254-020-0152-1
- Stern, R. E. et al. Dissipation of stop-and-go waves via control of autonomous vehicles: Field experiments. Transportation Research Part C: Emerging Technologies vol. 89 205–221 (2018) – 10.1016/j.trc.2018.02.005
- Tordeux, A. & Totzeck, C. Multi-scale description of pedestrian collective dynamics with port-Hamiltonian systems. Networks and Heterogeneous Media vol. 18 906–929 (2023) – 10.3934/nhm.2023039
- Treiber, M., Kesting, A. & Helbing, D. Delays, inaccuracies and anticipation in microscopic traffic models. Physica A: Statistical Mechanics and its Applications vol. 360 71–88 (2006) – 10.1016/j.physa.2005.05.001
- van der Schaft, A. Port-Hamiltonian systems: an introductory survey. Proceedings of the International Congress of Mathematicians Madrid, August 22–30, 2006 1339–1365 (2007) doi:10.4171/022-3/65 – 10.4171/022-3/65
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I. & Shochet, O. Novel Type of Phase Transition in a System of Self-Driven Particles. Physical Review Letters vol. 75 1226–1229 (1995) – 10.1103/physrevlett.75.1226
- Vicsek, T. & Zafeiris, A. Collective motion. Physics Reports vol. 517 71–140 (2012) – 10.1016/j.physrep.2012.03.004
- Wang, T., Li, G., Zhang, J., Li, S. & Sun, T. The effect of Headway Variation Tendency on traffic flow: Modeling and stabilization. Physica A: Statistical Mechanics and its Applications vol. 525 566–575 (2019) – 10.1016/j.physa.2019.03.116