Tensor products of Dirac structures and interconnection in Lagrangian mechanics
Authors
Henry O. Jacobs, Hiroaki Yoshimura
Abstract
Many mechanical systems are large and complex, despite being composed of simple subsystems. In order to understand such large systems it is natural to tear the system into these subsystems. Conversely we must understand how to invert this tearing procedure. In other words, we must understand interconnection of subsystems. Such an understanding has been already shown in the context of Hamiltonian systems on vector spaces via the port-Hamiltonian systems program, in which an interconnection may be achieved through the identification of shared variables, whereupon the notion of composition of Dirac structures allows one to interconnect two systems. In this paper, we seek to extend the program of the port-Hamiltonian systems on vector spaces to the case of Lagrangian systems on manifolds and also extend the notion of composition of Dirac structures appropriately. In particular, we will interconnect Lagrange-Dirac systems by modifying the respective Dirac structures of the involved subsystems. We define the interconnection of Dirac structures via an interaction Dirac structure and a tensor product of Dirac structures. We will show how the dynamics of the interconnected system is formulated as a function of the subsystems, and we will elucidate the associated variational principles. We will then illustrate how this theory extends the theory of port-Hamiltonian systems and the notion of composition of Dirac structures to manifolds with couplings which do not require the identification of shared variables. Lastly, we will show some examples: a mass-spring mechanical systems, an electric circuit, and a nonholonomic mechanical system.
Citation
- Journal: Journal of Geometric Mechanics
- Year: 2014
- Volume: 6
- Issue: 1
- Pages: 67–98
- Publisher: American Institute of Mathematical Sciences (AIMS)
- DOI: 10.3934/jgm.2014.6.67
BibTeX
@article{O_Jacobs_2014,
title={{Tensor products of Dirac structures and interconnection in Lagrangian mechanics}},
volume={6},
ISSN={1941-4897},
DOI={10.3934/jgm.2014.6.67},
number={1},
journal={Journal of Geometric Mechanics},
publisher={American Institute of Mathematical Sciences (AIMS)},
author={O. Jacobs, Henry and Yoshimura, Hiroaki},
year={2014},
pages={67--98}
}
References
- Afshari, E., Bhat, H. S., Hajimiri, A. & Marsden, J. E. Extremely wideband signal shaping using one- and two-dimensional nonuniform nonlinear transmission lines. Journal of Applied Physics vol. 99 (2006) – 10.1063/1.2174126
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- Batlle, C., Massana, I. & Simo, E. Representation of a general composition of Dirac structures. IEEE Conference on Decision and Control and European Control Conference 5199–5204 (2011) doi:10.1109/cdc.2011.6160588 – 10.1109/cdc.2011.6160588
- G. Blankenstein, Implicit Hamiltonian Systems: Symmetry and Interconnection,. PhD thesis (2000)
- Bloch, A. M. Nonholonomic Mechanics and Control. Interdisciplinary Applied Mathematics (Springer New York, 2003). doi:10.1007/b97376 – 10.1007/b97376
- A. M. Bloch, Representations of Dirac structures on vector spaces and nonlinear LC circuits,. In Proc. Sympos. Pure Math (1999)
- Bou-Rabee, N. & Marsden, J. E. Hamilton–Pontryagin Integrators on Lie Groups Part I: Introduction and Structure-Preserving Properties. Foundations of Computational Mathematics vol. 9 197–219 (2008) – 10.1007/s10208-008-9030-4
- R. K. Brayton, Nonlinear reciprocal networks, In Mathematical Aspects of Electrical Network Analysis, H.S. Wilf and F. Harary (eds).. SIAM - AMS Proceedings (1971)
- Cendra, H., Marsden, J. E. & Ratiu, T. S. Lagrangian reduction by stages. Memoirs of the American Mathematical Society vol. 152 0–0 (2001) – 10.1090/memo/0722
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica vol. 43 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- Chang, D. E., Bloch, A. M., Leonard, N. E., Marsden, J. E. & Woolsey, C. A. The Equivalence of Controlled Lagrangian and Controlled Hamiltonian Systems. ESAIM: Control, Optimisation and Calculus of Variations vol. 8 393–422 (2002) – 10.1051/cocv:2002045
- Courant, T. J. Dirac manifolds. Transactions of the American Mathematical Society vol. 319 631–661 (1990) – 10.1090/s0002-9947-1990-0998124-1
- T. J. Courant, Beyond Poisson structures,. In Action Hamiltoniennes de groupes. Troisième théoréme de Lie (Lyon 1986) (1986)
- Dirac, P. A. M. Generalized Hamiltonian Dynamics. Canadian Journal of Mathematics vol. 2 129–148 (1950) – 10.4153/cjm-1950-012-1
- I. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations,. (Nonlinear Science: Theory and Applications). Wiley & Sons Ltd. (1993)
- Dufour, J.-P. & Wade, A. On the local structure of Dirac manifolds. Compositio Mathematica vol. 144 774–786 (2008) – 10.1112/s0010437x07003272
- V. Duindam, Port-based Modelling and Control for Efficient Bipedal Walking Robots,. PhD thesis (2006)
- Duindam, V., Macchelli, A., Stramigioli, S. & Bruyninckx, H. Modeling and Control of Complex Physical Systems. (Springer Berlin Heidelberg, 2009). doi:10.1007/978-3-642-03196-0 – 10.1007/978-3-642-03196-0
- R. Featherstone, Robot Dynamics Algorithms,. Kluwer Academic (1987)
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica vol. 40 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Gualtieri, M. Generalized complex geometry. Annals of Mathematics vol. 174 75–123 (2011) – 10.4007/annals.2011.174.1.3
- H. O. Jacobs, Fluid-structure interaction in the Lagrange-Poincaré formalism,. arXiv:1212.1144 [math.DS] (2013)
- Jacobs, H. O. & Yoshimura, H. Interconnection and composition of Dirac structures for Lagrange-Dirac systems. IEEE Conference on Decision and Control and European Control Conference 928–933 (2011) doi:10.1109/cdc.2011.6160480 – 10.1109/cdc.2011.6160480
- Jacobs, H. et al. Interconnection of Lagrange-Dirac Dynamical Systems for Electric Circuits. AIP Conference Proceedings 566–569 (2010) doi:10.1063/1.3498539 – 10.1063/1.3498539
- G. Kron, Diakoptics: The Piecewise Solution of Large-Scale Systems,. McDonald (1963)
- Leok, M. & Ohsawa, T. Variational and Geometric Structures of Discrete Dirac Mechanics. Foundations of Computational Mathematics vol. 11 529–562 (2011) – 10.1007/s10208-011-9096-2
- Littlejohn, R. G. Variational principles of guiding centre motion. Journal of Plasma Physics vol. 29 111–125 (1983) – 10.1017/s002237780000060x
- J. E. Marsden, Introduction to Mechanics and Symmetry,. A basic exposition of classical mechanical systems. Second edition. Texts in Applied Mathematics (1999)
- Merker, J. On the Geometric Structure of Hamiltonian Systems with Ports. Journal of Nonlinear Science vol. 19 717–738 (2009) – 10.1007/s00332-009-9052-3
- Ortega, R., Loría, A., Nicklasson, P. J. & Sira-Ramírez, H. Passivity-Based Control of Euler-Lagrange Systems. Communications and Control Engineering (Springer London, 1998). doi:10.1007/978-1-4471-3603-3 – 10.1007/978-1-4471-3603-3
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- H. M. Paynter, Analysis and Design of Engineering Systems,. MIT Press (1961)
- Talasila, V., Clemente-Gallardo, J. & van der Schaft, A. J. Discrete port-Hamiltonian systems. Systems & Control Letters vol. 55 478–486 (2006) – 10.1016/j.sysconle.2005.10.001
- W. M. Tulczyjew, The Legendre transformation,. Annales de l’Institute Henri Poincaré (1977)
- A. J. van der Schaft, Port-Hamiltonian systems: An introductory survey,. In Proceedings of the International Conference of Mathematics (1996)
- A. J. van der Schaft, The Hamiltonian formulation of energy conserving physical systems with external ports,. Archiv für Elektronik und Übertragungstechnik (1995)
- Vankerschaver, J., Yoshimura, H. & Leok, M. The Hamilton-Pontryagin principle and multi-Dirac structures for classical field theories. Journal of Mathematical Physics vol. 53 (2012) – 10.1063/1.4731481
- Weinstein, A. Symplectic categories. Portugaliae Mathematica vol. 67 261–278 (2010) – 10.4171/pm/1866
- Wyatt, J. L. & Chua, L. O. A theory of nonenergic N‐ports. International Journal of Circuit Theory and Applications vol. 5 181–208 (1977) – 10.1002/cta.4490050210
- H. Yoshimura, Dynamics of Flexible Multibody Systems,. PhD thesis (1995)
- Yoshimura, H. & Marsden, J. E. Dirac structures in Lagrangian mechanics Part I: Implicit Lagrangian systems. Journal of Geometry and Physics vol. 57 133–156 (2006) – 10.1016/j.geomphys.2006.02.009
- Yoshimura, H. & Marsden, J. E. Dirac structures in Lagrangian mechanics Part II: Variational structures. Journal of Geometry and Physics vol. 57 209–250 (2006) – 10.1016/j.geomphys.2006.02.012
- H. Yoshimura, Dirac structures and implicit Lagrangian systems in electric networks,. In Proceedings of the 17th International Symposium on the Mathematical Theory of Networks and Systems (2006)
- Yoshimura, H. & Marsden, J. E. Dirac Structures and the Legendre Transformation for Implicit Lagrangian and Hamiltonian Systems. Lecture Notes in Control and Information Sciences 233–247 doi:10.1007/978-3-540-73890-9_18 – 10.1007/978-3-540-73890-9_18
- Yoshimura, H. & Marsden, J. E. Reduction of Dirac structures and the Hamilton-Pontryagin principle. Reports on Mathematical Physics vol. 60 381–426 (2007) – 10.1016/s0034-4877(08)00004-9
- Yoshimura, H. & E. Marsden, J. Dirac cotangent bundle reduction. Journal of Geometric Mechanics vol. 1 87–158 (2009) – 10.3934/jgm.2009.1.87
- H. Yoshimura, Interconnection of Dirac structures in Lagrange-Dirac dynamical systems,. In Proceedings of the 20th International Symposium on the Mathematical Theory of Networks and Systems (2010)