Interconnection and composition of Dirac structures for Lagrange-Dirac systems
Authors
Henry O. Jacobs, Hiroaki Yoshimura
Abstract
There is much known on the port-Hamiltonian theory of interconnection of Dirac structures through shared variables. This interconnection is known as Composition of Dirac structures. In this paper, we will show an alternative interconnection of Dirac structures called Bowtie interconnection in the context of Lagrange-Dirac dynamical systems. In particular, we try to illustrate the following two things: Firstly, how composition of Dirac structures may be used in the Lagrangian theory of LC-circuits. Secondly, how composition of Dirac structures may be linked with bowtie interconnection.
Citation
- Journal: IEEE Conference on Decision and Control and European Control Conference
- Year: 2011
- Volume:
- Issue:
- Pages: 928–933
- Publisher: IEEE
- DOI: 10.1109/cdc.2011.6160480
BibTeX
@inproceedings{Jacobs_2011,
title={{Interconnection and composition of Dirac structures for Lagrange-Dirac systems}},
DOI={10.1109/cdc.2011.6160480},
booktitle={{IEEE Conference on Decision and Control and European Control Conference}},
publisher={IEEE},
author={Jacobs, Henry O. and Yoshimura, Hiroaki},
year={2011},
pages={928--933}
}
References
- Yoshimura, H. & Marsden, J. E. Dirac Structures and the Legendre Transformation for Implicit Lagrangian and Hamiltonian Systems. Lecture Notes in Control and Information Sciences 233–247 doi:10.1007/978-3-540-73890-9_18 – 10.1007/978-3-540-73890-9_18
- yoshimura, Representations of dirac structures and implicit port-controlled lagrangian systems. Proc of International Symposium on Mathematical Theory of Networks and Systems (2008)
- Yoshimura, H. & Marsden, J. E. Reduction of Dirac structures and the Hamilton-Pontryagin principle. Reports on Mathematical Physics 60, 381–426 (2007) – 10.1016/s0034-4877(08)00004-9
- yoshimura, Dirac structures and implicit lagrangian systems in electric networks. Proc of the 17th International Symposium on Mathematical Theory of Networks and Systems (2006)
- Yoshimura, H. & Marsden, J. E. Dirac structures in Lagrangian mechanics Part I: Implicit Lagrangian systems. Journal of Geometry and Physics 57, 133–156 (2006) – 10.1016/j.geomphys.2006.02.009
- Yoshimura, H. & Marsden, J. E. Dirac structures in Lagrangian mechanics Part II: Variational structures. Journal of Geometry and Physics 57, 209–250 (2006) – 10.1016/j.geomphys.2006.02.012
- Cervera, J., Schaft, A. J. & Baños, A. On composition of Dirac structures and its implications for control by interconnection. Lecture Notes in Control and Information Sciences 55–63 doi:10.1007/3-540-45802-6_5 – 10.1007/3-540-45802-6_5
- bloch, Representations of dirac structures on vector spaces and nonlinear L-C circuits. Differential Geometric Control Theory (1997)
- Cervera, J., van der Schaft, A. J. & Baños, A. Interconnection of port-Hamiltonian systems and composition of Dirac structures. Automatica 43, 212–225 (2007) – 10.1016/j.automatica.2006.08.014
- yoshimura, Interconnection of dirac structures and lagrange-dirac dynamical systems. Proc 19th Int Symp on Mathematical Theory of Networks and Systems (2010)
- Jacobs, H. et al. Interconnection of Lagrange-Dirac Dynamical Systems for Electric Circuits. AIP Conference Proceedings 566–569 (2010) doi:10.1063/1.3498539 – 10.1063/1.3498539
- gualtieri, Generalized Complex Geometry (2007)
- courant, Beyond poisson structures. Seminaire Sud-rhodanien de Geometrie (1998)
- Courant, T. J. Dirac manifolds. Trans. Amer. Math. Soc. 319, 631–661 (1990) – 10.2307/2001258
- van der schaft, The hamiltonian formulation of energy conserving physical systems with external ports. Archiv fu?r Elektronik und U?bertragungstechnik (1995)
- urbanski, A slow and careful legendre transformation for singular lagrangians. Acta Phys Polon B (1999)