Structured Backward Errors for Eigenvalues of Linear Port-Hamiltonian Descriptor Systems
Authors
Volker Mehrmann, Paul Van Dooren
Abstract
When computing the eigenstructure of matrix pencils associated with the passivity analysis of perturbed port-Hamiltonian descriptor system using a structured generalized eigenvalue method, one should make sure that the computed spectrum satisfies the symmetries that corresponds to this structure and the underlying physical system. We perform a backward error analysis and show that for matrix pencils associated with port-Hamiltonian descriptor systems and a given computed eigenstructure with the correct symmetry structure there always exists a nearby port-Hamiltonian descriptor system with exactly that eigenstructure. We also derive bounds for how near this system is and show that the stability radius of the system plays a role in that bound.
Citation
- Journal: SIAM Journal on Matrix Analysis and Applications
- Year: 2021
- Volume: 42
- Issue: 1
- Pages: 1–16
- Publisher: Society for Industrial & Applied Mathematics (SIAM)
- DOI: 10.1137/20m1344184
BibTeX
@article{Mehrmann_2021,
title={{Structured Backward Errors for Eigenvalues of Linear Port-Hamiltonian Descriptor Systems}},
volume={42},
ISSN={1095-7162},
DOI={10.1137/20m1344184},
number={1},
journal={SIAM Journal on Matrix Analysis and Applications},
publisher={Society for Industrial & Applied Mathematics (SIAM)},
author={Mehrmann, Volker and Dooren, Paul Van},
year={2021},
pages={1--16}
}
References
- Alam, R., Bora, S., Karow, M., Mehrmann, V. & Moro, J. Perturbation Theory for Hamiltonian Matrices and the Distance to Bounded-Realness. SIAM Journal on Matrix Analysis and Applications vol. 32 484–514 (2011) – 10.1137/10079464x
- Beattie, C. A., Mehrmann, V. & Van Dooren, P. Robust port-Hamiltonian representations of passive systems. Automatica vol. 100 182–186 (2019) – 10.1016/j.automatica.2018.11.013
- Beattie, C., Mehrmann, V., Xu, H. & Zwart, H. Linear port-Hamiltonian descriptor systems. Mathematics of Control, Signals, and Systems vol. 30 (2018) – 10.1007/s00498-018-0223-3
- Benner P., Berlin (2015)
- Brull, T. & Schroder, C. Dissipativity Enforcement via Perturbation of Para-Hermitian Pencils. IEEE Transactions on Circuits and Systems I: Regular Papers vol. 60 164–177 (2013) – 10.1109/tcsi.2012.2215731
- Bunse-Gerstner, A., Byers, R., Mehrmann, V. & Nichols, N. K. Feedback design for regularizing descriptor systems. Linear Algebra and its Applications vol. 299 119–151 (1999) – 10.1016/s0024-3795(99)00167-6
- Byers, R., He, C. & Mehrmann, V. Where is the nearest non-regular pencil? Linear Algebra and its Applications vol. 285 81–105 (1998) – 10.1016/s0024-3795(98)10122-2
- Dopico, F. M., Lawrence, P. W., Pérez, J. & Dooren, P. V. Block Kronecker linearizations of matrix polynomials and their backward errors. Numerische Mathematik vol. 140 373–426 (2018) – 10.1007/s00211-018-0969-z
- Du N. H., Berlin (2013)
- Freund, R. W. & Jarre, F. An extension of the positive real lemma to descriptor systems. Optimization Methods and Software vol. 19 69–87 (2004) – 10.1080/10556780410001654232
- Gillis, N., Mehrmann, V. & Sharma, P. Computing the nearest stable matrix pairs. Numerical Linear Algebra with Applications vol. 25 (2018) – 10.1002/nla.2153
- Gillis, N. & Sharma, P. On computing the distance to stability for matrices using linear dissipative Hamiltonian systems. Automatica vol. 85 113–121 (2017) – 10.1016/j.automatica.2017.07.047
- Gillis N., SIAM J. Matrix Anal. Appl. (2018)
- Grivet-Talocia, S. Passivity Enforcement via Perturbation of Hamiltonian Matrices. IEEE Transactions on Circuits and Systems I: Regular Papers vol. 51 1755–1769 (2004) – 10.1109/tcsi.2004.834527
- Gugercin, S., Polyuga, R. V., Beattie, C. & van der Schaft, A. Structure-preserving tangential interpolation for model reduction of port-Hamiltonian systems. Automatica vol. 48 1963–1974 (2012) – 10.1016/j.automatica.2012.05.052
- Guglielmi, N., Lubich, C. & Mehrmann, V. On the Nearest Singular Matrix Pencil. SIAM Journal on Matrix Analysis and Applications vol. 38 776–806 (2017) – 10.1137/16m1079026
- Gustavsen, B. & Semlyen, A. Enforcing passivity for admittance matrices approximated by rational functions. IEEE Transactions on Power Systems vol. 16 97–104 (2001) – 10.1109/59.910786
- Maddocks, J. H., Overton, M. L., Maddocks, J. H. & Overton, M. L. Stability theory for dissipatively perturbed hamiltonian systems. Communications on Pure and Applied Mathematics vol. 48 583–610 (1995) – 10.1002/cpa.3160480602
- Mehl, C., Mehrmann, V. & Sharma, P. Stability Radii for Linear Hamiltonian Systems with Dissipation Under Structure-Preserving Perturbations. SIAM Journal on Matrix Analysis and Applications vol. 37 1625–1654 (2016) – 10.1137/16m1067330
- Mehl, C., Mehrmann, V. & Wojtylak, M. Linear Algebra Properties of Dissipative Hamiltonian Descriptor Systems. SIAM Journal on Matrix Analysis and Applications vol. 39 1489–1519 (2018) – 10.1137/18m1164275
- Mehrmann V., Nice (2019)
- Mehrmann, V., Schröder, C. & Simoncini, V. An implicitly-restarted Krylov subspace method for real symmetric/skew-symmetric eigenproblems. Linear Algebra and its Applications vol. 436 4070–4087 (2012) – 10.1016/j.laa.2009.11.009
- Mehrmann, V. & Van Dooren, P. M. Optimal Robustness of Port-Hamiltonian Systems. SIAM Journal on Matrix Analysis and Applications vol. 41 134–151 (2020) – 10.1137/19m1259092
- Overton M., Proceedings of the CDC-ECC (2005)
- Paige, C. & Van Loan, C. A Schur decomposition for Hamiltonian matrices. Linear Algebra and its Applications vol. 41 11–32 (1981) – 10.1016/0024-3795(81)90086-0
- Polyuga, R. V. & van der Schaft, A. Structure preserving model reduction of port-Hamiltonian systems by moment matching at infinity. Automatica vol. 46 665–672 (2010) – 10.1016/j.automatica.2010.01.018
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- van der Schaft, A. & Maschke, B. Generalized port-Hamiltonian DAE systems. Systems & Control Letters vol. 121 31–37 (2018) – 10.1016/j.sysconle.2018.09.008
- Chen C., J. Comp. Math. (1989)
- Van Dooren, P. The generalized eigenstructure problem in linear system theory. IEEE Transactions on Automatic Control vol. 26 111–129 (1981) – 10.1109/tac.1981.1102559