Stability Radii for Linear Hamiltonian Systems with Dissipation Under Structure-Preserving Perturbations
Authors
Christian Mehl, Volker Mehrmann, Punit Sharma
Abstract
Dissipative Hamiltonian (DH) systems are an important concept in energy based modeling of dynamical systems. One of the major advantages of the DH formulation is that system properties are encoded in an algebraic way. For instance, the algebraic structure of DH systems guarantees that the system is automatically stable. In this paper the question is discussed when a linear constant coefficient DH system is on the boundary of the region of asymptotic stability, i.e., when it has purely imaginary eigenvalues, or how much it has to be perturbed to be on this boundary. For unstructured systems this distance to instability (stability radius) is well understood. In this paper, explicit formulas for this distance under structure-preserving perturbations are determined. It is also shown (via numerical examples) that under structure-preserving perturbations the asymptotical stability of a DH system is much more robust than under general perturbations, since the distance to instability can be much larger when struc…
Citation
- Journal: SIAM Journal on Matrix Analysis and Applications
- Year: 2016
- Volume: 37
- Issue: 4
- Pages: 1625–1654
- Publisher: Society for Industrial & Applied Mathematics (SIAM)
- DOI: 10.1137/16m1067330
BibTeX
@article{Mehl_2016,
title={{Stability Radii for Linear Hamiltonian Systems with Dissipation Under Structure-Preserving Perturbations}},
volume={37},
ISSN={1095-7162},
DOI={10.1137/16m1067330},
number={4},
journal={SIAM Journal on Matrix Analysis and Applications},
publisher={Society for Industrial & Applied Mathematics (SIAM)},
author={Mehl, Christian and Mehrmann, Volker and Sharma, Punit},
year={2016},
pages={1625--1654}
}
References
- Bora, S., Karow, M., Mehl, C. & Sharma, P. Structured Eigenvalue Backward Errors of Matrix Pencils and Polynomials with Hermitian and Related Structures. SIAM Journal on Matrix Analysis and Applications vol. 35 453–475 (2014) – 10.1137/130925621
- Byers, R. A Bisection Method for Measuring the Distance of a Stable Matrix to the Unstable Matrices. SIAM Journal on Scientific and Statistical Computing vol. 9 875–881 (1988) – 10.1137/0909059
- Campbell, S. L. Linearization of DAEs along trajectories. ZAMP Zeitschrift f�r angewandte Mathematik und Physik vol. 46 70–84 (1995) – 10.1007/bf00952257
- Dalsmo, M. & van der Schaft, A. On Representations and Integrability of Mathematical Structures in Energy-Conserving Physical Systems. SIAM Journal on Control and Optimization vol. 37 54–91 (1998) – 10.1137/s0363012996312039
- Est�vez Schwarz, D. & Tischendorf, C. Structural analysis of electric circuits and consequences for MNA. International Journal of Circuit Theory and Applications vol. 28 131–162 (2000) – 10.1002/(sici)1097-007x(200003/04)28:2<131::aid-cta100>3.0.co;2-w
- Freitag, M. A. & Spence, A. A Newton-based method for the calculation of the distance to instability. Linear Algebra and its Applications vol. 435 3189–3205 (2011) – 10.1016/j.laa.2011.06.012
- Freund R. W., Berlin (2011)
- Golo G., Heidelberg (2003)
- He, C. & Watson, G. A. An Algorithm for Computing the Distance to Instability. SIAM Journal on Matrix Analysis and Applications vol. 20 101–116 (1998) – 10.1137/s0895479897314838
- Hinrichsen, D. & Pritchard, A. J. Stability radii of linear systems. Systems & Control Letters vol. 7 1–10 (1986) – 10.1016/0167-6911(86)90094-0
- Hinrichsen, D. & Pritchard, A. J. Stability radius for structured perturbations and the algebraic Riccati equation. Systems & Control Letters vol. 8 105–113 (1986) – 10.1016/0167-6911(86)90068-x
- Hinrichsen D., Boston (1990)
- Karow, M. μ-Values and Spectral Value Sets for Linear Perturbation Classes Defined by a Scalar Product. SIAM Journal on Matrix Analysis and Applications vol. 32 845–865 (2011) – 10.1137/090774896
- Mackey, D. S., Mackey, N. & Tisseur, F. Structured Mapping Problems for Matrices Associated with Scalar Products. Part I: Lie and Jordan Algebras. SIAM Journal on Matrix Analysis and Applications vol. 29 1389–1410 (2008) – 10.1137/060657856
- Martins, N. Efficient Eigenvalue and Frequency Response Methods Applied to Power System Small-Signal Stability Studies. IEEE Transactions on Power Systems vol. 1 217–224 (1986) – 10.1109/tpwrs.1986.4334874
- Martins, N. & Lima, L. T. G. Determination of suitable locations for power system stabilizers and static VAR compensators for damping electromechanical oscillations in large scale power systems. IEEE Transactions on Power Systems vol. 5 1455–1469 (1990) – 10.1109/59.99400
- Martins, N., Pellanda, P. C. & Rommes, J. Computation of Transfer Function Dominant Zeros With Applications to Oscillation Damping Control of Large Power Systems. IEEE Transactions on Power Systems vol. 22 1657–1664 (2007) – 10.1109/tpwrs.2007.907526
- Maschke, B. M., Van Der Schaft, A. J. & Breedveld, P. C. An intrinsic hamiltonian formulation of network dynamics: non-standard poisson structures and gyrators. Journal of the Franklin Institute vol. 329 923–966 (1992) – 10.1016/s0016-0032(92)90049-m
- Mayo, A. J. & Antoulas, A. C. A framework for the solution of the generalized realization problem. Linear Algebra and its Applications vol. 425 634–662 (2007) – 10.1016/j.laa.2007.03.008
- Putting energy back in control. IEEE Control Systems vol. 21 18–33 (2001) – 10.1109/37.915398
- Ortega, R., van der Schaft, A., Maschke, B. & Escobar, G. Interconnection and damping assignment passivity-based control of port-controlled Hamiltonian systems. Automatica vol. 38 585–596 (2002) – 10.1016/s0005-1098(01)00278-3
- Rommes, J. & Martins, N. Exploiting structure in large-scale electrical circuit and power system problems. Linear Algebra and its Applications vol. 431 318–333 (2009) – 10.1016/j.laa.2008.12.027
- van der Schaft A. J., New York (2004)
- A., Berlin (2013)
- van der Schaft A. J., Arch. Elektron. Übertragungstech. (1995)
- van der Schaft, A. J. & Maschke, B. M. Hamiltonian formulation of distributed-parameter systems with boundary energy flow. Journal of Geometry and Physics vol. 42 166–194 (2002) – 10.1016/s0393-0440(01)00083-3
- van der Schaft, A. J. & Maschke, B. M. Port-Hamiltonian Systems on Graphs. SIAM Journal on Control and Optimization vol. 51 906–937 (2013) – 10.1137/110840091
- Sun, J. Backward perturbation analysis of certain characteristic subspaces. Numerische Mathematik vol. 65 357–382 (1993) – 10.1007/bf01385757
- Trenkler, G. & Trenkler, G. Matrices Which Take a Given Vector into a Given Vector: Revisited. The American Mathematical Monthly vol. 111 50 (2004) – 10.2307/4145016
- Van Loan, C. How near is a stable matrix to an unstable matrix? Contemporary Mathematics 465–478 (1985) doi:10.1090/conm/047/828319 – 10.1090/conm/047/828319