Structure preserving discontinuous Galerkin approximation of one-dimensional port-Hamiltonian systems
Authors
Abstract
In this article, we present the structure preserving discretization of linear one-dimensional port-Hamiltonian (PH) systems of two conservation laws using discontinuous Galerkin (DG) methods. We recall the DG discretization procedure which is based on a subdivision of the computational domain, an elementwise weak formulation with up to two integrations by parts, and the interconnection of the elements using different numerical fluxes. We present the interconnection of the element models, which is power preserving in the case of conservative (unstabilized) numerical fluxes, and we set up the resulting global PH state space model. We discuss the properties of the obtained models, including the effect of the flux stabilization parameter on the spectrum. Finally, we show simulations with different parameters for a boundary controlled linear hyperbolic system.
Keywords
port-Hamiltonian systems; conservation laws; structure preserving discretization; discontinuous Galerkin
Citation
- Journal: IFAC-PapersOnLine
- Year: 2023
- Volume: 56
- Issue: 2
- Pages: 6783–6788
- Publisher: Elsevier BV
- DOI: 10.1016/j.ifacol.2023.10.386
- Note: 22nd IFAC World Congress- Yokohama, Japan, July 9-14, 2023
BibTeX
@article{Thoma_2023,
title={{Structure preserving discontinuous Galerkin approximation of one-dimensional port-Hamiltonian systems}},
volume={56},
ISSN={2405-8963},
DOI={10.1016/j.ifacol.2023.10.386},
number={2},
journal={IFAC-PapersOnLine},
publisher={Elsevier BV},
author={Thoma, Tobias and Kotyczka, Paul},
year={2023},
pages={6783--6788}
}
References
- Cardoso-Ribeiro, Port-Hamiltonian modeling, discretization and feedback control of a circular water tank. (2019)
- Cardoso-Ribeiro, F. L., Matignon, D. & Lefèvre, L. A partitioned finite element method for power-preserving discretization of open systems of conservation laws. IMA Journal of Mathematical Control and Information vol. 38 493–533 (2020) – 10.1093/imamci/dnaa038
- Chowdhury, (2018)
- Duindam, (2009)
- Golo, G., Talasila, V., van der Schaft, A. & Maschke, B. Hamiltonian discretization of boundary control systems. Automatica vol. 40 757–771 (2004) – 10.1016/j.automatica.2003.12.017
- Hesthaven, (2008)
- Jacob, (2012)
- Kitamura, (2020)
- Kotyczka, (2019)
- Logg, (2012)
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information vol. 37 1400–1422 (2020) – 10.1093/imamci/dnaa018
- Trenchant, V., Hu, W., Ramirez, H. & Gorrec, Y. L. Structure Preserving Finite Differences in Polar Coordinates for Heat and Wave Equations. IFAC-PapersOnLine vol. 51 571–576 (2018) – 10.1016/j.ifacol.2018.03.096
- Xu, Y., van der Vegt, J. J. W. & Bokhove, O. Discontinuous Hamiltonian Finite Element Method for Linear Hyperbolic Systems. Journal of Scientific Computing vol. 35 241–265 (2008) – 10.1007/s10915-008-9191-y
- Zienkiewicz, (2005)