Stability and Passivity for a Class of Distributed Port-Hamiltonian Networks
Authors
Hannes Gernandt, Dorothea Hinsen
Abstract
We consider a class of infinite dimensional (distributed) pH systems which is invariant under Kirchhoff-type interconnections and prove exponential stability and a power balance equation for classical solutions. The results are illustrated for power networks that incorporate distributed transmission line models based on the telegraph equations.
Citation
- Journal: SIAM Journal on Control and Optimization
- Year: 2024
- Volume: 62
- Issue: 6
- Pages: 2936–2962
- Publisher: Society for Industrial & Applied Mathematics (SIAM)
- DOI: 10.1137/22m1539174
BibTeX
@article{Gernandt_2024,
title={{Stability and Passivity for a Class of Distributed Port-Hamiltonian Networks}},
volume={62},
ISSN={1095-7138},
DOI={10.1137/22m1539174},
number={6},
journal={SIAM Journal on Control and Optimization},
publisher={Society for Industrial & Applied Mathematics (SIAM)},
author={Gernandt, Hannes and Hinsen, Dorothea},
year={2024},
pages={2936--2962}
}
References
- Augner, B. & Jacob, B. Stability and stabilization of infinite-dimensional linear port-Hamiltonian systems. Evolution Equations & Control Theory vol. 3 207–229 (2014) – 10.3934/eect.2014.3.207
- Aalto, A. & Malinen, J. Compositions of passive boundary control systems. Mathematical Control & Related Fields vol. 3 1–19 (2013) – 10.3934/mcrf.2013.3.1
- Augner, B. Well-posedness and stability for interconnection structures of port-Hamiltonian type. Operator Theory: Advances and Applications 1–52 (2020) doi:10.1007/978-3-030-35898-3_1 – 10.1007/978-3-030-35898-3_1
- Banasiak, J. & Błoch, A. Telegraph systems on networks and port-Hamiltonians. I. Boundary conditions and well-posedness. Evolution Equations and Control Theory vol. 11 1331 (2022) – 10.3934/eect.2021046
- Behrndt, J., Hassi, S. & de Snoo, H. Boundary Value Problems, Weyl Functions, and Differential Operators. Monographs in Mathematics (Springer International Publishing, 2020). doi:10.1007/978-3-030-36714-5 – 10.1007/978-3-030-36714-5
- Derkach, V. A. & Malamud, M. M. Generalized resolvents and the boundary value problems for Hermitian operators with gaps. Journal of Functional Analysis vol. 95 1–95 (1991) – 10.1016/0022-1236(91)90024-y
- Egger, H. & Kugler, T. Damped wave systems on networks: exponential stability and uniform approximations. Numerische Mathematik vol. 138 839–867 (2017) – 10.1007/s00211-017-0924-4
- Egger, H., Kugler, T., Liljegren-Sailer, B., Marheineke, N. & Mehrmann, V. On Structure-Preserving Model Reduction for Damped Wave Propagation in Transport Networks. SIAM Journal on Scientific Computing vol. 40 A331–A365 (2018) – 10.1137/17m1125303
- Engel K.-J., One-Parameter Semigroups for Linear Evolution Equations (2000)
- Gorbachuk, V. I., Gorbachuk, M. L. & Kochubei, A. N. Extension theory for symmetric operators and boundary value problems for differential equations. Ukrainian Mathematical Journal vol. 41 1117–1129 (1989) – 10.1007/bf01057246
- Gernandt, H., Haller, F. E., Reis, T. & Schaft, A. J. van der. Port-Hamiltonian formulation of nonlinear electrical circuits. Journal of Geometry and Physics vol. 159 103959 (2021) – 10.1016/j.geomphys.2020.103959
- Chung-Wen Ho, Ruehli, A. & Brennan, P. The modified nodal approach to network analysis. IEEE Transactions on Circuits and Systems vol. 22 504–509 (1975) – 10.1109/tcs.1975.1084079
- Jacob, B. & Zwart, H. J. Linear Port-Hamiltonian Systems on Infinite-Dimensional Spaces. (Springer Basel, 2012). doi:10.1007/978-3-0348-0399-1 – 10.1007/978-3-0348-0399-1
- Kato T., Perturbation Theory for Linear Operators (2000)
- Kurula M., Internat. J. Control (2015)
- Kurula, M., Zwart, H., van der Schaft, A. & Behrndt, J. Dirac structures and their composition on Hilbert spaces. Journal of Mathematical Analysis and Applications vol. 372 402–422 (2010) – 10.1016/j.jmaa.2010.07.004
- Le Gorrec, Y., Ramirez, H., Wu, Y., Liu, N. & Macchelli, A. Energy Shaping Control of 1D Distributed Parameter Systems. Advances in Delays and Dynamics 3–26 (2022) doi:10.1007/978-3-030-94766-8_1 – 10.1007/978-3-030-94766-8_1
- Le Gorrec, Y., Zwart, H. & Maschke, B. Dirac structures and Boundary Control Systems associated with Skew-Symmetric Differential Operators. SIAM Journal on Control and Optimization vol. 44 1864–1892 (2005) – 10.1137/040611677
- Malinen, J. & Staffans, O. J. Conservative boundary control systems. Journal of Differential Equations vol. 231 290–312 (2006) – 10.1016/j.jde.2006.05.012
- Malinen, J. & Staffans, O. J. Impedance Passive and Conservative Boundary Control Systems. Complex Analysis and Operator Theory vol. 1 279–300 (2007) – 10.1007/s11785-006-0009-3
- Mehrmann, V. & Unger, B. Control of port-Hamiltonian differential-algebraic systems and applications. Acta Numerica vol. 32 395–515 (2023) – 10.1017/s0962492922000083
- Nedialkov, N., Pryce, J. D. & Scholz, L. An Energy-Based, Always Index $\leq$ 1 and Structurally Amenable Electrical Circuit Model. SIAM Journal on Scientific Computing vol. 44 B1122–B1147 (2022) – 10.1137/21m1434611
- Rashad, R., Califano, F., van der Schaft, A. J. & Stramigioli, S. Twenty years of distributed port-Hamiltonian systems: a literature review. IMA Journal of Mathematical Control and Information vol. 37 1400–1422 (2020) – 10.1093/imamci/dnaa018
- Reis, T. Mathematical Modeling and Analysis of Nonlinear Time-Invariant RLC Circuits. Modeling and Simulation in Science, Engineering and Technology 125–198 (2014) doi:10.1007/978-3-319-08437-4_2 – 10.1007/978-3-319-08437-4_2
- Ramirez, H., Le Gorrec, Y., Macchelli, A. & Zwart, H. Exponential Stabilization of Boundary Controlled Port-Hamiltonian Systems With Dynamic Feedback. IEEE Transactions on Automatic Control vol. 59 2849–2855 (2014) – 10.1109/tac.2014.2315754
- Schmüdgen, K. Unbounded Self-Adjoint Operators on Hilbert Space. Graduate Texts in Mathematics (Springer Netherlands, 2012). doi:10.1007/978-94-007-4753-1 – 10.1007/978-94-007-4753-1
- Staffans, O. J. Passive and Conservative Continuous-Time Impedance and Scattering Systems. Part I: Well-Posed Systems. Mathematics of Control, Signals, and Systems (MCSS) vol. 15 291–315 (2002) – 10.1007/s004980200012
- Staffans, O. Well-Posed Linear Systems. (2005) doi:10.1017/cbo9780511543197 – 10.1017/cbo9780511543197
- Trostorff S., Israel J. Math (2024)
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Villegas, J. A., Zwart, H., Le Gorrec, Y. & Maschke, B. Exponential Stability of a Class of Boundary Control Systems. IEEE Transactions on Automatic Control vol. 54 142–147 (2009) – 10.1109/tac.2008.2007176
- Waurick M., Systems Theory and PDEs (2022)
- Zwart, H., Le Gorrec, Y. & Maschke, B. Building systems from simple hyperbolic ones. Systems & Control Letters vol. 91 1–6 (2016) – 10.1016/j.sysconle.2016.02.002
- Zwart, H., Le Gorrec, Y., Maschke, B. & Villegas, J. Well-posedness and regularity of hyperbolic boundary control systems on a one-dimensional spatial domain. ESAIM: Control, Optimisation and Calculus of Variations vol. 16 1077–1093 (2009) – 10.1051/cocv/2009036