An Energy-Based, Always Index \( \leq \) 1 and Structurally Amenable Electrical Circuit Model
Authors
Nedialko Nedialkov, John D. Pryce, Lena Scholz
Abstract
Combining three themes: port-Hamiltonian energy-based modelling, structural analysis as used in the circuit world, and structural analysis of general differential-algebraic equations, we form a new model for electrical circuits, the compact port-Hamiltonian equations. They have remarkable simplicity and symmetry, and always have index at most 1 and other good numerical properties. The method has been implemented in Matlab. We give proofs and numerical results.
Citation
- Journal: SIAM Journal on Scientific Computing
- Year: 2022
- Volume: 44
- Issue: 4
- Pages: B1122–B1147
- Publisher: Society for Industrial & Applied Mathematics (SIAM)
- DOI: 10.1137/21m1434611
BibTeX
@article{Nedialkov_2022,
title={{An Energy-Based, Always Index $\leq$ 1 and Structurally Amenable Electrical Circuit Model}},
volume={44},
ISSN={1095-7197},
DOI={10.1137/21m1434611},
number={4},
journal={SIAM Journal on Scientific Computing},
publisher={Society for Industrial & Applied Mathematics (SIAM)},
author={Nedialkov, Nedialko and Pryce, John D. and Scholz, Lena},
year={2022},
pages={B1122--B1147}
}
References
- Amari S., RAAG Mem. (1962)
- Balabanian N., Electrical Network Theory (1969)
- Bartel, A., Baumanns, S. & Schöps, S. Structural analysis of electrical circuits including magnetoquasistatic devices. Applied Numerical Mathematics vol. 61 1257–1270 (2011) – 10.1016/j.apnum.2011.08.004
- Bashkow T. R., IRE Trans. Circuit Theory (1957)
- Beattie, C., Mehrmann, V., Xu, H. & Zwart, H. Linear port-Hamiltonian descriptor systems. Mathematics of Control, Signals, and Systems vol. 30 (2018) – 10.1007/s00498-018-0223-3
- Biggs N. L., Algebraic Graph Theory (1993)
- Branin F. H., Matrix Tensor Quarterly (1962)
- Brown, D. P. Derivative-explicit differential equations for RLC graphs. Journal of the Franklin Institute vol. 275 503–514 (1963) – 10.1016/0016-0032(63)90534-9
- Campbell, S. L. & Gear, C. W. The index of general nonlinear DAEs. Numerische Mathematik vol. 72 173–196 (1995) – 10.1007/s002110050165
- Chua L. O., Linear and Nonlinear Circuits (1987)
- Est�vez Schwarz, D. & Tischendorf, C. Structural analysis of electric circuits and consequences for MNA. International Journal of Circuit Theory and Applications vol. 28 131–162 (2000) – 10.1002/(sici)1097-007x(200003/04)28:2<131::aid-cta100>3.0.co;2-w
- Estévez Schwarz, D. A step‐by‐step approach to compute a consistent initialization for the MNA. International Journal of Circuit Theory and Applications vol. 30 1–16 (2001) – 10.1002/cta.168
- Estévez Schwarz, D. & Lamour, R. A new approach for computing consistent initial values and Taylor coefficients for DAEs using projector-based constrained optimization. Numerical Algorithms vol. 78 355–377 (2017) – 10.1007/s11075-017-0379-9
- Falaize A., Appl. Sci. (2016)
- Gernandt, H., Haller, F. E., Reis, T. & Schaft, A. J. van der. Port-Hamiltonian formulation of nonlinear electrical circuits. Journal of Geometry and Physics vol. 159 103959 (2021) – 10.1016/j.geomphys.2020.103959
- Getreu I., Modelling the Bipolar Transistor (1978)
- Golub, G. Matrix Computations. (2013) doi:10.56021/9781421407944 – 10.56021/9781421407944
- Günther, M., Bartel, A., Jacob, B. & Reis, T. Dynamic iteration schemes and port‐Hamiltonian formulation in coupled differential‐algebraic equation circuit simulation. International Journal of Circuit Theory and Applications vol. 49 430–452 (2020) – 10.1002/cta.2870
- Harrison B. K., J. SIAM (1963)
- Iwata, S. & Takamatsu, M. Index minimization of differential-algebraic equations in hybrid analysis for circuit simulation. Mathematical Programming vol. 121 105–121 (2008) – 10.1007/s10107-008-0227-8
- Iwata, S., Takamatsu, M. & Tischendorf, C. Hybrid Analysis of Nonlinear Time-Varying Circuits Providing DAEs with Index at Most One. Mathematics in Industry 151–158 (2010) doi:10.1007/978-3-642-12294-1_20 – 10.1007/978-3-642-12294-1_20
- Iwata, S., Takamatsu, M. & Tischendorf, C. Tractability index of hybrid equations for circuit simulation. Mathematics of Computation vol. 81 923–939 (2011) – 10.1090/s0025-5718-2011-02558-5
- Jonker, R. & Volgenant, A. A shortest augmenting path algorithm for dense and sparse linear assignment problems. Computing vol. 38 325–340 (1987) – 10.1007/bf02278710
- Kron G., Tensor Analysis of Networks (1939)
- Kröner, A., Marquardt, W. & Gilles, E. D. Computing consistent initial conditions for differential-algebraic equations. Computers & Chemical Engineering vol. 16 S131–S138 (1992) – 10.1016/s0098-1354(09)80015-x
- Marquez, F. M., Zufiria, P. J. & Yebra, L. J. Port-Hamiltonian Modeling of Multiphysics Systems and Object-Oriented Implementation With the Modelica Language. IEEE Access vol. 8 105980–105996 (2020) – 10.1109/access.2020.3000129
- Mattsson, S. E. & Söderlind, G. Index Reduction in Differential-Algebraic Equations Using Dummy Derivatives. SIAM Journal on Scientific Computing vol. 14 677–692 (1993) – 10.1137/0914043
- McKenzie, R. & Pryce, J. Structural Analysis and Dummy Derivatives: Some Relations. Springer Proceedings in Mathematics & Statistics 293–299 (2015) doi:10.1007/978-3-319-12307-3_42 – 10.1007/978-3-319-12307-3_42
- Mehrmann, V. & Morandin, R. Structure-preserving discretization for port-Hamiltonian descriptor systems. 2019 IEEE 58th Conference on Decision and Control (CDC) 6863–6868 (2019) doi:10.1109/cdc40024.2019.9030180 – 10.1109/cdc40024.2019.9030180
- Mehrmann V., Preprint, https://arxiv.org/abs/2201.06590 (2022)
- Nedialkov, N. S. & Pryce, J. D. Solving Differential-Algebraic Equations by Taylor Series (I): Computing Taylor Coefficients. BIT Numerical Mathematics vol. 45 561–591 (2005) – 10.1007/s10543-005-0019-y
- Nedialkov N. S., Always Index $1$ and Structurally Amenable Electrical Circuit Model, Preprint, https://arxiv.org/abs/2108.05106 (2021)
- Pantelides, C. C. The Consistent Initialization of Differential-Algebraic Systems. SIAM Journal on Scientific and Statistical Computing vol. 9 213–231 (1988) – 10.1137/0909014
- Pryce, J. D. Bit Numerical Mathematics vol. 41 364–394 (2001) – 10.1023/a:1021998624799
- Riaza, R. Differential-Algebraic Systems. (2008) doi:10.1142/6746 – 10.1142/6746
- Scholz, L. The Signature Method for DAEs arising in the modeling of electrical circuits. Journal of Computational and Applied Mathematics vol. 332 107–139 (2018) – 10.1016/j.cam.2017.10.012
- Scholz, L. & Steinbrecher, A. Regularization of DAEs based on the Signature method. BIT Numerical Mathematics vol. 56 319–340 (2015) – 10.1007/s10543-015-0565-x
- Seshu S., Linear Graphs and Electrical Networks (1961)
- Stewart G. W., Matrix Perturbation Theory (1990)
- Takamatsu, M. & Iwata, S. Index characterization of differential–algebraic equations in hybrid analysis for circuit simulation. International Journal of Circuit Theory and Applications vol. 38 419–440 (2008) – 10.1002/cta.577
- van der Schaft, A. J. Port-Hamiltonian Differential-Algebraic Systems. Surveys in Differential-Algebraic Equations I 173–226 (2013) doi:10.1007/978-3-642-34928-7_5 – 10.1007/978-3-642-34928-7_5
- van der Schaft, A. & Jeltsema, D. Port-Hamiltonian Systems Theory: An Introductory Overview. Foundations and Trends® in Systems and Control vol. 1 173–378 (2014) – 10.1561/2600000002
- Vlach J., Computer Methods for Circuit Analysis and Design (1994)
- Weinberg L., Modified Nodal Analysis for Large-Scale Circuits (1984)